1 research outputs found

    Electrical and thermal applications of carbon nanotube films

    Full text link
    Abstract Carbon nanotubes (CNTs) have fascinating mechanical, electrical and thermal properties, all of which significantly depend on structural properties such as nanotube length, number of walls, lattice defect densities, impurities and surface functional groups. A number of different applications of carbon nanotubes have been demonstrated during the past two decades including electrical interconnects, transistors, heating and cooling devices, sensors and various actuators. However, further studies on the structure-dependent properties and innovative handling techniques of these materials are needed in order to explore the limitations of use and to be able fully to exploit the advantageous properties of such one-dimensional sp2 hybridized carbon nanomaterials. In this thesis, random networks of single-wall and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively) and aligned films of multi-walled carbon nanotubes are studied in the context of three main application fields: gas sensing, electrical interconnects/electrodes and thermal cooling elements. Analyses of associated material properties and some feasible integration techniques are discussed. Single-wall and multi-walled carbon nanotube films cast from aqueous dispersions are shown to be selective nitric oxide sensing components in Taguchi-type sensor devices, in which films based on SWCNTs outperformed those made of MWCNTs. The thickness dependent electrical conduction mechanism of inkjet-printed SWCNT films is also discussed. Robust aligned MWCNT films are demonstrated as soft electrical contact brushes in DC motors and in other moving electrical contacts. The thermal properties of freestanding aligned MWCNT forests are analyzed and shown to be potential alternatives to copper or aluminium in the thermal management of electrical components.Tiivistelmä Hiilinanoputkien kiehtovat mekaaniset, sähköiset ja lämmönjohto-ominaisuudet ovat kiinnostaneet tutkijoita suuresti viimeisten kahden vuosikymmenen ajan. Monia erilaisia applikaatioita on demonstroitu tänä aikana: mukaan lukien sähköiset kontaktit, transistori-rakenteet, lämmitys- ja jäähdytyslaitteet, anturirakenteet sekä erilaiset aktuaattori-rakenteet. Tämän väitöskirjan päätavoitteena on tutkia hiilinanoputkien toiminnollisuutta ja käytännöllisyyttä erilaisissa sovelluskohteissa. Tässä työssä käytettävät hiilinanoputkirakenteet ovat joko satunnaisjärjestyksessä olevia nanoputkista koostuvia verkostorakenteita tai yhdensuuntaisia, makroskooppisia hiilinanoputkikalvoja. Nanoputkia tutkitaan kolmessa erityyppisessä sovelluskohteessa: kaasuanturisovelluksessa, sähköisissä kontaktirakenteissa sekä jäähdytyselementteinä. Työssä analysoidaan hiilinanoputkirakenteiden ominaisuuksia eri sovelluskohteissa sekä esitetään joitain käyttökelpoisia tekniikoita hiilinanoputkien integroimiseen olemassa oleviin tekniikoihin. Hiilinanoputkien osoitetaan olevan käyttökelpoisia aktiivisia materiaaleja typpioksidille resistiivisessä kaasuanturirakenteessa. Tulosten perusteella yksiseinämäiset hiilinanoputket ovat moniseinämäisiä herkempiä ja parempia kyseisessä sovelluksessa. Lisäksi tutkitaan ja analysoidaan mustesuihku-tulostettujen yksiseinämäisten hiilinanoputkifilmien sähköisten ominaisuuksien riippuvuutta filmin paksuudesta. Vantterien yhdensuuntaisten moniseinämäisten hiilinanoputkirakenteiden osoitetaan toimivan erinomaisesti pehmeinä sähköisinä kontaktielementteinä liikkuvissa sähköisissä kontakteissa. Vapaasti seisovien yhdensuuntaisten, moniseinämäisten hiilinanoputkirakenteiden lämmönjohto-ominaisuuksien tutkiminen ja analysointi osoittaa, että kyseisiä rakenteita voidaan käyttää tehokkaina jäähdytyselementteinä ja mahdollisesti korvaavana vaihtoehtona alumiinille ja kuparille sähköisten komponenttien lämmönhallinta sovelluksissa
    corecore