34 research outputs found

    Approximate programmable quantum processors

    Full text link
    A quantum processor is a programmable quantum circuit in which both the data and the program, which specifies the operation that is carried out on the data, are quantum states. We study the situation in which we want to use such a processor to approximate a set of unitary operators to a specified level of precision. We measure how well an operation is performed by the process fidelity between the desired operation and the operation produced by the processor. We show how to find the program for a given processor that produces the best approximation of a particular unitary operation. We also place bounds on the dimension of the program space that is necessary to approximate a set of unitary operators to a specified level of precision.Comment: 8 page

    Robustness of optimal probabilistic storage and retrieval of unitary channels to noise

    Full text link
    We investigate robustness of probabilistic storage and retrieval device optimized for phase gates to noise. We use noisy input composed of convex combination of unitary channel with either depolarizing or dephasing channel. We find out that the resistance to dephasing noise is higher than to depolarization. Interestingly, for the depolarisation the retrieval reduces the degree of noise. We also examine the possible realizations showing that their performance is different when the noise is present.Comment: 8 pages, 7 figures, accepted in PR

    Concurrence vs. purity: Influence of local channels on Bell states of two qubits

    Full text link
    We analyze how a maximally entangled state of two-qubits (e.g., the singlet ψs\psi_s) is affected by action of local channels described by completely positive maps \cE . We analyze the concurrence and the purity of states \varrho_\cE=\cE\otimes\cI[\psi_s].Using the concurrence-{\it vs}-purity phase diagram we characterize local channels \cE by their action on the singlet state ψs\psi_s. We specify a region of the concurrence-{\it vs.}-purity diagram that is achievable from the singlet state via the action of unital channels. We show that even most general (including non-unital) local channels acting just on a single qubit of the original singlet state cannot generate the maximally entangled mixed states (MEMS). We study in detail various time evolutions of the original singlet state induced by local Markovian semigroups. We show that the decoherence process is represented in the concurrence-{\it vs.}-purity diagram by a line that forms the lower bound of the achievable region for unital maps. On the other hand, the depolarization process is represented by a line that forms the upper bound of the region of maps induced by unital maps.Comment: 9 pages, 6 figure

    Probability-based comparison of quantum states

    Full text link
    We address the following state comparison problem: is it possible to design an experiment enabling us to unambiguously decide (based on the observed outcome statistics) on the sameness or difference of two unknown state preparations without revealing complete information about the states? We find that the claim "the same" can never be concluded without any doubts unless the information is complete. Moreover, we prove that a universal comparison (that perfectly distinguishes all states) also requires complete information about the states. Nevertheless, for some measurements, the probability distribution of outcomes still allows one to make an unambiguous conclusion regarding the difference between the states even in the case of incomplete information. We analyze an efficiency of such a comparison of qudit states when it is based on the SWAP-measurement. For qubit states, we consider in detail the performance of special families of two-valued measurements enabling us to successfully compare at most half of the pairs of states. Finally, we introduce almost universal comparison measurements which can distinguish almost all non-identical states (up to a set of measure zero). The explicit form of such measurements with two and more outcomes is found in any dimension.Comment: 12 pages, 6 figures, 1 table, some results are extende

    All (qubit) decoherences: Complete characterization and physical implementation

    Full text link
    We investigate decoherence channels that are modelled as a sequence of collisions of a quantum system (e.g., a qubit) with particles (e.g., qubits) of the environment. We show that collisions induce decoherence when a bi-partite interaction between the system qubit and an environment (reservoir) qubit is described by the controlled-U unitary transformation (gate). We characterize decoherence channels and in the case of a qubit we specify the most general decoherence channel and derive a corresponding master equation. Finally, we analyze entanglement that is generated during the process of decoherence between the system and its environment.Comment: 10 pages, 3 figure

    Divisibility of qubit channels and dynamical maps

    Get PDF
    The concept of divisibility of dynamical maps is used to introduce an analogous concept for quantum channels by analyzing the simulability of channels by means of dynamical maps. In particular, this is addressed for Lindblad divisible, completely positive divisible and positive divisible dynamical maps. The corresponding L-divisible, CP-divisible and P-divisible subsets of channels are characterized (exploiting the results by Wolf et al. [25]) and visualized for the case of qubit channels. We discuss the general inclusions among divisibility sets and show several equivalences for qubit channels. To this end we study the conditions of L-divisibility for finite dimensional channels, especially the cases with negative eigen-values, extending and completing the results of Ref. [26]. Furthermore we show that transitions between every two of the defined divisibility sets are allowed. We explore particular examples of dynamical maps to compare these concepts. Finally, we show that every divisible but not infinitesimal divisible qubit channel (in positive maps) is entanglement-breaking, and open the question if something similar occurs for higher dimensions

    Entanglement, purity and energy: Two qubits vs Two modes

    Get PDF
    We study the relationship between the entanglement, mixedness and energy of two-qubit and two-mode Gaussian quantum states. We parametrize the set of allowed states of these two fundamentally different physical systems using measures of entanglement, mixedness and energy that allow us to compare and contrast the two systems using a phase diagram. This phase diagram enables one to clearly identify not only the physically allowed states, but the set of states connected under an arbitrary quantum operation. We pay particular attention to the maximally entangled mixed states (MEMS) of each system. Following this we investigate how efficiently one may transfer entanglement from two-mode to two-qubit states.Comment: 13 figures. References and 1 figure adde
    corecore