18 research outputs found
Convergence of first-order finite volume method based on exact Riemann solver for the complete compressible Euler equations
Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the convergence of the first-order finite volume method based on the exact Riemann solver for the complete compressible Euler equations. Specifically, we derive entropy inequality and prove the consistency of numerical method. Passing to the limit, we show the weak and strong convergence of numerical solutions and identify their limit. The numerical results presented for the spiral and the Richtmyer-Meshkov problem are consistent with our theoretical analysis
Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
In this paper we derive and analyse a class of linearly implicit schemes which includes the one of Feistauer and Kučera (J Comput Phys 224:208–221, 2007) as well as the class of RS-IMEX schemes (Schütz and Noelle in J Sci Comp 64:522–540, 2015; Kaiser et al. in J Sci Comput 70:1390–1407, 2017; Bispen et al. in Commun Comput Phys 16:307–347, 2014; Zakerzadeh in ESAIM Math Model Numer Anal 53:893–924, 2019). The implicit part is based on a Jacobian matrix which is evaluated at a reference state. This state can be either the solution at the old time level as in Feistauer and Kučera (2007), or a numerical approximation of the incompressible limit equations as in Zeifang et al. (Commun Comput Phys 27:292–320, 2020), or possibly another state. Subsequently, it is shown that this class of methods is asymptotically preserving under the assumption of a discrete Hilbert expansion. For a one-dimensional setting with some limitations on the reference state, the existence of a discrete Hilbert expansion is shown
Shear-Thinning in Oligomer Melts - Molecular Origins and Applications
We investigate the molecular origin of shear-thinning in melts of flexible, semiflexible and rigid oligomers with coarse-grained simulations of a sheared melt. Entanglements, alignment, stretching and tumbling modes or suppression of the latter all contribute to understanding how macroscopic flow properties emerge from the molecular level. In particular, we identify the rise and decline of entanglements with increasing chain stiffness as the major cause for the non-monotonic behaviour of the viscosity in equilibrium and at low shear rates, even for rather small oligomeric systems. At higher shear rates, chains align and disentangle, contributing to shear-thinning. By performing simulations of single chains in shear flow, we identify which of these phenomena are of collective nature and arise through interchain interactions and which are already present in dilute systems. Building upon these microscopic simulations, we identify by means of the Irving–Kirkwood formula the corresponding macroscopic stress tensor for a non-Newtonian polymer fluid. Shear-thinning effects in oligomer melts are also demonstrated by macroscopic simulations of channel flows. The latter have been obtained by the discontinuous Galerkin method approximating macroscopic polymer flows. Our study confirms the influence of microscopic details in the molecular structure of short polymers such as chain flexibility on macroscopic polymer flows
Convergence of a finite volume scheme for the compressible Navier–Stokes system
We study convergence of a finite volume scheme for the compressible (barotropic) Navier–Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results
Numerical simulation of a contractivity based multiscale cancer invasion model
We present a problem-suited numerical method for a particularly challenging cancer invasion model. This model is a multiscale haptotaxis advection-reaction-diffusion system that describes the macroscopic dynamics of two types of cancer cells coupled with microscopic dynamics of the cells adhesion on the extracellular matrix. The difficulties to overcome arise from the non-constant advection and diffusion coefficients, a time delay term, as well as stiff reaction terms. Our numerical method is a second order finite volume implicit-explicit scheme adjusted to include (a) non-constant diffusion coefficients in the implicit part, (b) an interpolation technique for the time delay, and (c) a restriction on the time increment for the stiff reaction terms.</p