31,396 research outputs found

    Fundamental Plane Distances to Early-type Field Galaxies in the South Equatorial Strip. I. The Spectroscopic Data

    Get PDF
    Radial velocities and central velocity dispersions are derived for 238 E/S0 galaxies from medium-resolution spectroscopy. New spectroscopic data have been obtained as part of a study of the Fundamental Plane distances and peculiar motions of early-type galaxies in three selected directions of the South Equatorial Strip, undertaken in order to investigate the reality of large-scale streaming motion; results of this study have been reported in M\"uller etet al.al. (1998). The new APM South Equatorial Strip Catalog (17.5<δ<+2.5-17^{\circ}.5 < \delta < +2^{\circ}.5) was used to select the sample of field galaxies in three directions: (1) 15h10 - 16h10; (2) 20h30 - 21h50; (3) 00h10 - 01h30. The spectra obtained have a median S/N per A˚{\AA} of 23, an instrumental resolution (FWHM) of \sim 4 A˚{\AA}, and the spectrograph resolution (dispersion) is \sim 100 km~s1^{-1}. The Fourier cross-correlation method was used to derive the radial velocities and velocity dispersions. The velocity dispersions have been corrected for the size of the aperture and for the galaxy effective radius. Comparisons of the derived radial velocities with data from the literature show that our values are accurate to 40 km~s1^{-1}. A comparison with results from J\orgensen et al. (1995) shows that the derived central velocity dispersion have an rms scatter of 0.036 in logσ\log \sigma. There is no offset relative to the velocity dispersions of Davies et al. (1987).Comment: accepted for publication in Astronomy & Astrophysics Supplement Serie

    Identification of the dominant diffusing species in silicide formation

    Get PDF
    Implanted noble gas atoms of Xe have been used as diffusion markers in the growth study of three silicides: Ni2Si, VSi2, and TiSi2. Backscattering of MeV He has been used to determine the displacement of the markers. We found that while Si atoms predominate the diffusion in VSi2 and TiSi2, Ni atoms are the faster moving species in Ni2Si

    Statuen in Verbannung. Ägyptischer Statuenexport in den Vorderen Orient unter Amenophis III. und IV.

    Get PDF

    Effect of long range forces on the interfacial profiles in thin binary polymer films

    Full text link
    We study the effect of surface fields on the interfacial properties of a binary polymer melt confined between two parallel walls. Each wall attracts a different component of the blend by a non-retarded van der Waals potential. An interface which runs parallel to the surfaces is stabilized in the center of the film. Using extensive Monte Carlo simulations we study the interfacial properties as a function of the film thickness, the strength of the surface forces and the lateral size over which the profiles across the film are averaged. We find evidence for capillary wave broadening of the apparent interfacial profiles. However, the apparent interfacial width cannot be described quantitatively by a simple logarithmic dependence on the film thickness. The Monte Carlo simulations reveal that the surface fields give rise to an additional reduction of the intrinsic interfacial width and an increase of the effective interfacial tension upon decreasing the film thickness. These modifications of the intrinsic interfacial properties are confirmed by self-consistent field calculations. Taking account of the thickness dependence of the intrinsic interfacial properties and the capillary wave broadening, we can describe our simulation results quantitatively.Comment: to appear in J.Chem.Phy

    Electron Refrigeration in the Tunneling Approach

    Full text link
    The qualities of electron refrigeration by means of tunnel junctions between superconducting and normal--metal electrodes are studied theoretically. A suitable approximation of the basic expression for the heat current across those tunnel junctions allows the investigation of several features of the device such as its optimal bias voltage, its maximal heat current, its optimal working point, and the maximally gained temperature reduction. Fortunately, the obtained results can be compared with those of a recent experiment.Comment: 4 pages, 4 Postscript figures, uses eps

    Testing Lorentz invariance by use of vacuum and matter filled cavity resonators

    Full text link
    We consider tests of Lorentz invariance for the photon and fermion sector that use vacuum and matter-filled cavities. Assumptions on the wave-function of the electrons in crystals are eliminated from the underlying theory and accurate sensitivity coefficients (including some exceptionally large ones) are calculated for various materials. We derive the Lorentz-violating shift in the index of refraction n, which leads to additional sensitivity for matter-filled cavities ; and to birefringence in initially isotropic media. Using published experimental data, we obtain improved bounds on Lorentz violation for photons and electrons at levels of 10^-15 and below. We discuss implications for future experiments and propose a new Michelson-Morley type experiment based on birefringence in matter.Comment: 15 pages, 8 table

    Gross-Ooguri Phase Transition at Zero and Finite Temperature: Two Circular Wilson Loop Case

    Get PDF
    In the context of AdS/CFTAdS/CFT correspondence the two Wilson loop correlator is examined at both zero and finite temperatures. On the basis of an entirely analytical approach we have found for Nambu-Goto strings the functional relation dSc(Reg)/dL=2πkd S_c^{(Reg)} / dL = 2 \pi k between Euclidean action ScS_c and loop separation LL with integration constant kk, which corresponds to the analogous formula for point-particles. The physical implications of this relation are explored in particular for the Gross-Ooguri phase transition at finite temperature.Comment: 13pages, 6 postscript figures, published version in JHE

    Faraday waves on a viscoelastic liquid

    Full text link
    We investigate Faraday waves on a viscoelastic liquid. Onset measurements and a nonlinear phase diagram for the selected patterns are presented. By virtue of the elasticity of the material a surface resonance synchronous to the external drive competes with the usual subharmonic Faraday instability. Close to the bicriticality the nonlinear wave interaction gives rise to a variety of novel surface states: Localised patches of hexagons, hexagonal superlattices, coexistence of hexagons and lines. Theoretical stability calculations and qualitative resonance arguments support the experimental observations.Comment: 4 pages, 4figure
    corecore