31,396 research outputs found
Fundamental Plane Distances to Early-type Field Galaxies in the South Equatorial Strip. I. The Spectroscopic Data
Radial velocities and central velocity dispersions are derived for 238 E/S0
galaxies from medium-resolution spectroscopy. New spectroscopic data have been
obtained as part of a study of the Fundamental Plane distances and peculiar
motions of early-type galaxies in three selected directions of the South
Equatorial Strip, undertaken in order to investigate the reality of large-scale
streaming motion; results of this study have been reported in M\"uller
(1998). The new APM South Equatorial Strip Catalog () was used to select the sample of field galaxies in
three directions: (1) 15h10 - 16h10; (2) 20h30 - 21h50; (3) 00h10 - 01h30. The
spectra obtained have a median S/N per of 23, an instrumental
resolution (FWHM) of 4 , and the spectrograph resolution
(dispersion) is 100 km~s. The Fourier cross-correlation method
was used to derive the radial velocities and velocity dispersions. The velocity
dispersions have been corrected for the size of the aperture and for the galaxy
effective radius. Comparisons of the derived radial velocities with data from
the literature show that our values are accurate to 40 km~s. A
comparison with results from J\orgensen et al. (1995) shows that the derived
central velocity dispersion have an rms scatter of 0.036 in .
There is no offset relative to the velocity dispersions of Davies et al.
(1987).Comment: accepted for publication in Astronomy & Astrophysics Supplement
Serie
Identification of the dominant diffusing species in silicide formation
Implanted noble gas atoms of Xe have been used as diffusion markers in the growth study of three silicides: Ni2Si, VSi2, and TiSi2. Backscattering of MeV He has been used to determine the displacement of the markers. We found that while Si atoms predominate the diffusion in VSi2 and TiSi2, Ni atoms are the faster moving species in Ni2Si
Statuen in Verbannung. Ägyptischer Statuenexport in den Vorderen Orient unter Amenophis III. und IV.
Effect of long range forces on the interfacial profiles in thin binary polymer films
We study the effect of surface fields on the interfacial properties of a
binary polymer melt confined between two parallel walls. Each wall attracts a
different component of the blend by a non-retarded van der Waals potential. An
interface which runs parallel to the surfaces is stabilized in the center of
the film. Using extensive Monte Carlo simulations we study the interfacial
properties as a function of the film thickness, the strength of the surface
forces and the lateral size over which the profiles across the film are
averaged. We find evidence for capillary wave broadening of the apparent
interfacial profiles. However, the apparent interfacial width cannot be
described quantitatively by a simple logarithmic dependence on the film
thickness. The Monte Carlo simulations reveal that the surface fields give rise
to an additional reduction of the intrinsic interfacial width and an increase
of the effective interfacial tension upon decreasing the film thickness. These
modifications of the intrinsic interfacial properties are confirmed by
self-consistent field calculations. Taking account of the thickness dependence
of the intrinsic interfacial properties and the capillary wave broadening, we
can describe our simulation results quantitatively.Comment: to appear in J.Chem.Phy
Electron Refrigeration in the Tunneling Approach
The qualities of electron refrigeration by means of tunnel junctions between
superconducting and normal--metal electrodes are studied theoretically. A
suitable approximation of the basic expression for the heat current across
those tunnel junctions allows the investigation of several features of the
device such as its optimal bias voltage, its maximal heat current, its optimal
working point, and the maximally gained temperature reduction. Fortunately, the
obtained results can be compared with those of a recent experiment.Comment: 4 pages, 4 Postscript figures, uses eps
Testing Lorentz invariance by use of vacuum and matter filled cavity resonators
We consider tests of Lorentz invariance for the photon and fermion sector
that use vacuum and matter-filled cavities. Assumptions on the wave-function of
the electrons in crystals are eliminated from the underlying theory and
accurate sensitivity coefficients (including some exceptionally large ones) are
calculated for various materials. We derive the Lorentz-violating shift in the
index of refraction n, which leads to additional sensitivity for matter-filled
cavities ; and to birefringence in initially isotropic media. Using published
experimental data, we obtain improved bounds on Lorentz violation for photons
and electrons at levels of 10^-15 and below. We discuss implications for future
experiments and propose a new Michelson-Morley type experiment based on
birefringence in matter.Comment: 15 pages, 8 table
Gross-Ooguri Phase Transition at Zero and Finite Temperature: Two Circular Wilson Loop Case
In the context of correspondence the two Wilson loop correlator is
examined at both zero and finite temperatures. On the basis of an entirely
analytical approach we have found for Nambu-Goto strings the functional
relation between Euclidean action and loop
separation with integration constant , which corresponds to the
analogous formula for point-particles. The physical implications of this
relation are explored in particular for the Gross-Ooguri phase transition at
finite temperature.Comment: 13pages, 6 postscript figures, published version in JHE
Faraday waves on a viscoelastic liquid
We investigate Faraday waves on a viscoelastic liquid. Onset measurements and
a nonlinear phase diagram for the selected patterns are presented. By virtue of
the elasticity of the material a surface resonance synchronous to the external
drive competes with the usual subharmonic Faraday instability. Close to the
bicriticality the nonlinear wave interaction gives rise to a variety of novel
surface states: Localised patches of hexagons, hexagonal superlattices,
coexistence of hexagons and lines. Theoretical stability calculations and
qualitative resonance arguments support the experimental observations.Comment: 4 pages, 4figure
- …