4 research outputs found

    The role of microRNAs in medulloblastoma

    No full text
    Medulloblastomas (MBs) are the most frequent brain tumors in children and remained a major therapeutic challenge. Clinical and histopathological features are used for disease classification and patient prognostication. Currently, several molecular studies using transcriptomic and genomic approaches suggested the existence of four molecular subtypes, increasing the complexity, and knowledge of MB biology. Despite these significant advances, the molecular basis of MBs is not fully understood. MicroRNAs (miRNAs) are a group of small nonprotein coding RNA molecules that target genes by inducing mRNA degradation or translational repression. They represent an evolutionary conserved mechanism that controls fundamental cellular processes, such as development, differentiation, metabolism, proliferation, and apoptosis. Aberrant expression of miRNAs correlates with various cancers. This altered expression can arise from mutation, methylation, deletion, and gain of miRNA-encoding regions. We here review the knowledge of miRNAs in MBs. The expression patterns of miRNAs in MBs were comprehensively evaluated and their diagnostic, prognostic, and therapeutic biomarker role assessed. miRNAs are important players in MB tumorigenesis and their therapeutic exploitation can constitute an alternative approach to this devastating disease

    Identification of MicroRNA Expression Profiles Related to the Aggressiveness of Salivary Gland Adenoid Cystic Carcinomas

    No full text
    Adenoid cystic carcinoma (ACC) has been reported as the second most common carcinoma of the salivary glands. Few studies have associated miRNA expression with ACC aggressiveness. In this study, we evaluated the miRNA profile of formalin-fixed, paraffin-embedded (FFPE) samples of salivary gland ACC patients using the NanoString platform. We studied the miRNA expression levels associated with the solid growth pattern, the more aggressive histologic feature of ACCs, compared with the tubular and cribriform growth patterns. Moreover, the perineural invasion status, a common clinicopathological feature of the disease that is frequently associated with the clinical progression of ACC, was investigated. The miRNAs showing significant differences between the study groups were selected for target prediction and functional enrichment, which included associations with the disease according to dedicated databases. We observed decreased expression of miR-181d, miR-23b, miR-455, miR-154-5p, and miR-409 in the solid growth pattern compared with tubular and cribriform growth patterns. In contrast, miR-29c, miR-140, miR-195, miR-24, miR-143, and miR-21 were overexpressed in patients with perineural invasion. Several target genes of the miRNAs identified have been associated with molecular processes involved in cell proliferation, apoptosis, and tumor progression. Together, these findings allowed the characterization of miRNAs potentially associated with aggressiveness in salivary gland adenoid cystic carcinoma. Our results highlight important new miRNA expression profiles involved in ACC carcinogenesis that could be associated with the aggressive behavior of this tumor type

    Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer

    No full text
    Breast cancer (BC) is a highly heterogeneous disease. The treatment of BC is complicated owing to intratumoral complexity. Tissue biopsy and immunohistochemistry are the current gold standard techniques to guide breast cancer therapy; however, these techniques do not assess tumoral molecular heterogeneity. Personalized medicine aims to overcome these biological and clinical complexities. Advances in techniques and computational analyses have enabled increasingly sensitive, specific, and accurate application of liquid biopsy. Such progress has ushered in a new era in precision medicine, where the objective is personalized treatment of breast cancer, early screening, accurate diagnosis and prognosis, relapse detection, longitudinal monitoring, and drug selection. Liquid biopsy can be defined as the sampling of components of tumor cells that are released from a tumor and/or metastatic deposits into the blood, urine, feces, saliva, and other biological substances. Such components include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or circulating tumor RNA (ctRNA), platelets, and exosomes. This review aims to highlight the role of liquid biopsy in breast cancer and precision medicine
    corecore