192 research outputs found
Hard scattering and jets--from p-p collisions in the 1970's to Au+Au collisions at RHIC
Hard scattering in p-p collisions, discovered at the CERN ISR in 1972 by the
method of leading particles, proved that the partons of Deeply Inelastic
Scattering strongly interacted with each other. Further ISR measurements
utilizing inclusive single or pairs of hadrons established that high pT
particles are produced from states with two roughly back-to-back jets which are
the result of scattering of constituents of the nucleons as described by
Quantum Chromodynamics (QCD), which was developed during the course of these
measurements. These techniques, which are the only practical method to study
hard-scattering and jet phenomena in Au+Au central collisions, are reviewed,
with application to measurements at RHIC.Comment: 4 pages, 5 figures, Proceedings of Hard Probes 2004, International
Conference on Hard and Electromagnetic Probes of High Energy Nuclear
Collisions, Nov 4-10, 2004, to appear in EPJ
TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits
Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3 x 10(-21)), A928V (rs35018800, OR = 0.53, P = 1.2 x 10(-9)), and I684S (rs12720356, OR = 0.86, P = 4.6 x 10(-7)). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6 x 10(-18)), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; P(omnibus) = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing \u3e500 phenotypes using electronic medical records (EMR) in \u3e29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases
Strange particle production in proton-proton collisions at TeV with ALICE at the LHC
The production of mesons containing strange quarks (K, ) and both
singly and doubly strange baryons (, Anti-, and
+Anti-) are measured at central rapidity in pp collisions at
= 0.9 TeV with the ALICE experiment at the LHC. The results are
obtained from the analysis of about 250 k minimum bias events recorded in 2009.
Measurements of yields (dN/dy) and transverse momentum spectra at central
rapidities for inelastic pp collisions are presented. For mesons, we report
yields () of 0.184 0.002 stat. 0.006 syst. for K and
0.021 0.004 stat. 0.003 syst. for . For baryons, we find
= 0.048 0.001 stat. 0.004 syst. for , 0.047
0.002 stat. 0.005 syst. for Anti- and 0.0101 0.0020 stat.
0.0009 syst. for +Anti-. The results are also compared with
predictions for identified particle spectra from QCD-inspired models and
provide a baseline for comparisons with both future pp measurements at higher
energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Study of QGP signatures with the phi->K+K- signal in Pb-Pb ALICE events
The phi->K+K- decay channel in Pb-Pb collisions at LHC is studied through a
full simulation of the ALICE detector. The study focuses on possible signatures
in this channel of quark-gluon plasma (QGP) formation. On a basis of 10^6
collisions at high centrality some proposed QGP signatures are clearly visible
both in K+K- invariant mass and transverse mass distributions. The high
significance of this observation appears to reside heavily on the use of the
TOF (Time Of Flight) system of ALICE in addition to its central tracking
detectors.Comment: 9 pages, 7 figures, to appear in EPJ
Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study
Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 Ă 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 Ă 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 Ă 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 Ă 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 Ă 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 Ă 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 Ă 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed
Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA
The production of D-+/-- and D-0-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb(-1). The measurements cover the kinematic range 5 < Q(2) < 1000 GeV2, 0.02 < y < 0.7, 1.5 < p(T)(D) < 15 GeV and |eta(D)| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F-2(c (c) over bar), to the proton structure function, F-2
Planck Intermediate Results II: Comparison of SunyaevâZeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of SunyaevâZeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferom- eter, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y500) and the scale radius (Ξ500) of each cluster. Our resulting constraints in the Y500 â Ξ500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the SunyaevâZeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally
Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV
We report on the first measurement of the triangular , quadrangular
, and pentagonal charged particle flow in Pb-Pb collisions at 2.76
TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show
that the triangular flow can be described in terms of the initial spatial
anisotropy and its fluctuations, which provides strong constraints on its
origin. In the most central events, where the elliptic flow and
have similar magnitude, a double peaked structure in the two-particle azimuthal
correlations is observed, which is often interpreted as a Mach cone response to
fast partons. We show that this structure can be naturally explained from the
measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Planck intermediate results I : Further validation of new Planck clusters with XMM-Newton
Peer reviewe
- âŠ