412,236 research outputs found
Thermopower of Two-Dimensional Electrons at = 3/2 and 5/2
The longitudinal thermopower of ultra-high mobility two-dimensional electrons
has been measured at both zero magnetic field and at high fields in the
compressible metallic state at filling factor and the
incompressible fractional quantized Hall state at . At zero field
our results demonstrate that the thermopower is dominated by electron diffusion
for temperatures below about mK. A diffusion dominated thermopower is
also observed at and allows us to extract an estimate of the
composite fermion effective mass. At both the temperature and
magnetic field dependence of the observed thermopower clearly signal the
presence of the energy gap of this fractional quantized Hall state. We find
that the thermopower in the vicinity of exceeds that recently
predicted under the assumption that the entropy of the 2D system is dominated
by non-abelian quasiparticle exchange statistics.Comment: 10 pages, 10 figures
Nuclear Halos and Drip Lines in Symmetry-Conserving Continuum HFB Theory
We review the properties of nuclear halos and nuclear skins in drip line
nuclei in the framework of the spherical Hartree-Fock-Bogoliubov theory with
continuum effects and projection on good particle number with the Gogny force.
We first establish the position of the un-projected HFB drip lines for the two
most employed parametrizations of the Gogny force and show that the use of
finite-range interactions leads almost always to small-sized halos, even in the
least bound nuclei, which is in agreement with most mean-field predictions. We
also discuss the size of the neutron skin at the drip line and its relation to
neutron asymmetry. The impact of particle-number projection and its conceptual
consequences near the drip line are analyzed in detail. In particular, we
discuss the role of the chemical potential in a projected theory and the
criteria required to define the drip line. We show that including particle
number projection can shift the latter, in particular near closed shells. We
notice that, as a result, the size of the halo can be increased due to larger
pairing correlations. However, combining the most realistic pairing
interaction, a proper treatment of the continuum and particle number projection
does not permit to reproduce the very large halos observed in very light
nuclei.Comment: Re-submitted to Phys. Rev. C after Referee's review. Layout of
figures changed to cope with editor's requirement
Continuum and Symmetry-Conserving Effects in Drip-line Nuclei Using Finite-range Forces
We report the first calculations of nuclear properties near the drip-lines
using the spherical Hartree-Fock-Bogoliubov mean-field theory with a
finite-range force supplemented by continuum and particle number projection
effects. Calculations were carried out in a basis made of the eigenstates of a
Woods-Saxon potential computed in a box, thereby garanteeing that continuum
effects were properly taken into account. Projection of the self-consistent
solutions on good particle number was carried out after variation, and an
approximation of the variation after projection result was used. We give the
position of the drip-lines and examine neutron densities in neutron-rich
nuclei. We discuss the sensitivity of nuclear observables upon continuum and
particle-number restoration effects.Comment: 5 pages, 3 figures, Phys. Rev. C77, 011301(R) (2008
Twisted speckle entities inside wavefront reversal mirrors
The previously unknown property of the optical speckle pattern reported. The
interference of a speckle with an oppositely moving phase-conjugated speckle
wave produces a randomly distributed ensemble of a twisted entities (ropes)
surrounding optical vortex lines. These entities appear in a wide range of
randomly chosen speckle parameters inside the phase-conjugating mirrors
regardless to an internal physical mechanism of the wavefront reversal. These
numerically generated interference patterns are relevant to a Brillouin -mirrors and to a four-wave mixing -mirrors based upon laser trapped
ultracold atomic cloud.Comment: 4 pages,3 figures, Accepted to Physical Review
Associated Production of a Top Quark and a Charged Higgs Boson
We compute the inclusive and differential cross sections for the associated
production of a top quark along with a charged Higgs boson at hadron colliders
to next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD) and
in supersymmetric QCD. For small Higgs boson masses we include top quark pair
production diagrams with subsequent top quark decay into a bottom quark and a
charged Higgs boson. We compare the NLO differential cross sections obtained in
the bottom parton picture with those for the gluon-initiated production process
and find good agreement. The effects of supersymmetric loop contributions are
explored. Only the corrections to the Yukawa coupling are sizable in the
potential discovery region at the CERN Large Hadron Collider (LHC). All
expressions and numerical results are fully differential, permitting selections
on the momenta of both the top quark and the charged Higgs boson.Comment: 15 pages, 9 figures; section, figures, equations and references
added, version to appear in PRD, 33 pages, 11 figure
Zero bias anomaly in a two dimensional granular insulator
We compare tunneling density of states (TDOS) into two ultrathin Ag films,
one uniform and one granular, for different degrees of disorder. The uniform
film shows a crossover from Altshuler-Aronov (AA) zero bias anomaly to Efros
Shklovskii (ES) like Coulomb gap as the disorder is increased. The granular
film, on the other hand, exhibits AA behavior even deeply in the insulating
regime. We analyze the data and find that granularity introduces a new regime
for the TDOS. While the conductivity is dominated by hopping between clusters
of grains and is thus insulating, the TDOS probes the properties of an
individual cluster which is "metallic".Comment: 4 pages, 4 figure
Magnetoelectricity and Magnetostriction due to the Rare Earth Moment in TmAl(BO)
The magnetic properties, the magnetostriction, and the magnetoelectric effect
in the d-electron free rare-earth aluminum borate TmAl(BO) are
investigated between room temperature and 2 K. The magnetic susceptibility
reveals a strong anisotropy with the hexagonal c-axis as the hard magnetic
axis. Magnetostriction measurements show a large effect of an in-plane field
reducing both, the a- and c-axis lattice parameters. The magnetoelectric
polarization change in a- and c-directions reaches up to 300 C/m at 70
kOe with the field applied along the a-axis. The magnetoelectric polarization
is proportional to the lattice contraction in magnetic field. The results of
this investigation prove the existence of a significant coupling between the
rare earth magnetic moment and the lattice in Al(BO) compounds
( = rare earth). They further show that the rare earth moment itself will
generate a large magnetoelectric effect which makes it easier to study and to
understand the origin of the magnetoelectric interaction in this class of
materials.Comment: 4 pages, 5 figure
Optical Properties of atmospheric dust from twilight observations
Three methods of approximation are described and used to separate the primary twilight brightness from the observed brightness. Photoelectric observations obtained are combined with observations from a balloon and from the observatory to derive the atmospheric scattering phase functions of 0.37 micron and 0.58 micron as a function of height. Comparison of these data with data for a Rayleigh atmosphere provide information on the optical properties of dust in the upper atmosphere
- …