27 research outputs found

    Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Full text link
    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions

    Studying the Dynamics of Breakdown of Thin Horizontal Liquid Layers with Local Heating

    No full text
    Experimental study of liquid layers breakdown when heated locally from the substrate side was made. Water and ethanol were used as working liquids with a layer thickness of 300 μm. Basic steps of the breakdown process were found and mean velocities of the dry spot formation were determined; the values are 0.06 mm/sec for ethanol and 5.15 mm/sec for water. The formation of residual layer over the hot-spot before the breakdown has been found for both liquids. The creation of a droplet cluster near the heating region is observed when using water as a working fluid. It was shown that evaporation is one of the general factors influencing the process of layer breakdown and dry spot formation as well as thermocapillary effect

    Thermocapillary breakdown of a horizontal spot-heated liquid layer

    No full text
    Thermocapillary breakdown of thin (0.3–0.7 mm) horizontal layers of liquid (ethanol) when heated from a localized hot spot was investigated experimentally. The effects of layer thickness and the surface properties of the substrates on the breakdown dynamics were studied. Visualization and control of the liquid layer were carried out using schlieren and shadowgraphy techniques. Main steps of the breakdown process were determined and average velocity of the dry spot formation was measured. Significant influence of the substrate properties on breakdown dynamics has been found. It was shown that one of the main factors affecting the dynamics of layer breakdown and the formation of dry spots in the heating area besides the thermocapillary effect is evaporation

    Thermocapillary breakdown of a horizontal spot-heated liquid layer

    No full text
    Thermocapillary breakdown of thin (0.3–0.7 mm) horizontal layers of liquid (ethanol) when heated from a localized hot spot was investigated experimentally. The effects of layer thickness and the surface properties of the substrates on the breakdown dynamics were studied. Visualization and control of the liquid layer were carried out using schlieren and shadowgraphy techniques. Main steps of the breakdown process were determined and average velocity of the dry spot formation was measured. Significant influence of the substrate properties on breakdown dynamics has been found. It was shown that one of the main factors affecting the dynamics of layer breakdown and the formation of dry spots in the heating area besides the thermocapillary effect is evaporation

    Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Get PDF
    The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol) of limited size under the action of gas flow (air). The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed

    Studying the Dynamics of Breakdown of Thin Horizontal Liquid Layers with Local Heating

    Get PDF
    Experimental study of liquid layers breakdown when heated locally from the substrate side was made. Water and ethanol were used as working liquids with a layer thickness of 300 μm. Basic steps of the breakdown process were found and mean velocities of the dry spot formation were determined; the values are 0.06 mm/sec for ethanol and 5.15 mm/sec for water. The formation of residual layer over the hot-spot before the breakdown has been found for both liquids. The creation of a droplet cluster near the heating region is observed when using water as a working fluid. It was shown that evaporation is one of the general factors influencing the process of layer breakdown and dry spot formation as well as thermocapillary effect

    Evolution of the deformation profile of a horizontal thin ethanol layer when heated locally

    No full text
    Thermocapillary breakdown of thin horizontal layer of ethanol when heated from a localized heat source was studied experimentally. The influence of layer depth on the breakdown process was investigated. Evolution of the layer thickness in the heating point and deformation profile were being monitored and the critical thickness of the layer was evaluated using confocal technique. Pulsations of layer thickness over the heating area before the breakdown have been found

    Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    No full text
    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions

    Evolution of the deformation profile of a horizontal thin ethanol layer when heated locally

    No full text
    Thermocapillary breakdown of thin horizontal layer of ethanol when heated from a localized heat source was studied experimentally. The influence of layer depth on the breakdown process was investigated. Evolution of the layer thickness in the heating point and deformation profile were being monitored and the critical thickness of the layer was evaluated using confocal technique. Pulsations of layer thickness over the heating area before the breakdown have been found

    Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    No full text
    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions
    corecore