9 research outputs found

    Methyl 4-Hydroxy-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxylate and Its Analogs Modified in the Benzene Moiety of the Molecule as New Analgesics

    No full text
    In order to identify new regularities of the “structure–analgesic activity” relationship in the series of 2,1-benzothiazine derivatives, the synthesis of methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and a group of its analogs substituted in the benzene moiety of the molecule, as well as their mono-and diammonium salts, was performed with tris(hydroxymethyl)aminomethane. The algorithm was proposed; it allows for uniquely solving the question of the nature of the substituent and its true position in the benzothiazine core based on the complex use of NMR (1H and 13C) and mass spectrometry data. Using single-crystal X-ray diffraction analysis it was proven that salt formation first passes through the cyclic sulfamide group and only then through the 4-hydroxyl group, and is always accompanied by a significant conformational rearrangement of the molecule. Based on the results of pharmacological tests it was found that modification of the benzene moiety of the molecule can be used as a method for enhancing the analgesic properties of the class of compounds studied. The presence of a substitute in position 7 is particularly effective, regardless of its nature. A comparative analysis of the analgesic activity of the initial esters and their mono- and diammonium salts convincingly showed that the common belief about a direct relationship between the solubility of a substance and the level of its biological effect is not always true. As it turned out, increasing the solubility in water can lead to a variety of consequences: From a significant increase in analgesia to its complete elimination. It was suggested that the analgesic activity of the compounds studied is determined not by solubility, but by the molecular conformations formed during their obtainment

    Crystal Habits and Biological Properties of N-(4-Trifluoromethylphenyl)-4-Hydroxy-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxamide

    No full text
    In order to study polymorphic modifications of N-(4-trifluoromethylphenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide, which is of interest as a promising analgesic, its three colorless crystal forms with different habitus have been obtained: sticks of ethyl acetate, plates of meta-xylene and blocks of ortho-xylene. However, the X-ray diffraction analysis has shown that all the forms studied have the identical molecular and crystal structure in spite of such significant differences in appearance. Moreover, pharmacological tests have revealed significant differences in the analgesic activity in these samples (a total of five experimental models were used: “acetic-acid-induced writhing”, “hot plate”, “thermal irritation of the tail tip” (tail-flick), “tail electric stimulation” and “neuropathic pain”), acute toxicity and the ability to cause gastric damage. As a result, only the plate crystal form of N-(4-trifluoromethylphenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide is recommended for further studies. Thus, it has been proven that the habitus of crystals is an important characteristic of the drug substance and is able to have a noticeable effect on its biological properties. Changes in habitus should be considered as a guide to the mandatory verification of at least the basic pharmacological parameters of the new form regardless of whether the molecular and crystal structure changes

    Synthesis and Regularities of the Structure–Activity Relationship in a Series of <i>N</i>-Pyridyl-4-methyl-2,2-dioxo-1<i>H</i>-2λ<sup>6</sup>,1-benzothiazine-3-carboxamides

    No full text
    According to our quantum and chemical calculations 4-methyl-2,2-dioxo-1H-2&#955;6,1-benzothiazine-3-carboxylic acid imidazolide is theoretically almost as reactive as its 2-carbonyl analog, and it forms the corresponding N-pyridyl-4-methyl-2,2-dioxo-1H-2&#955;6,1-benzothiazine-3-carboxamides with many aminopyridines. However, in practice, the sulfo group introduces significant changes at times and prevents the acylation of sterically hindered amines. One of these products was 2-amino-6-methylpyridine. Thus, it has been concluded that aminopyridines interact with imidazolide in aromatic form where the target for the initial electrophilic attack is the ring nitrogen. To confirm the structure of all substances synthesized, 1H-NMR spectroscopy and X-ray diffraction analysis were used. From X-ray diffraction data it follows that in the crystalline phase the carbonyl and sulfo group may occupy different positions with respect to the plane of the benzothiazine bicycle: this position may be unilateral, typical for 4-methyl-2,2-dioxo-1H-2&#955;6,1-benzothiazine-3-carboxamides, versatile, and not yet encountered in compounds of this type. A comparison of these data with the results of the pharmacological screening conducted on the standard model of carrageenan inflammation showed that the N-pyridylamides of the first group demonstrated a direct dependence of their analgesic and anti-inflammatory activity on the mutual arrangement of the planes of the benzothiazine and pyridine fragments. The new molecular conformation of the benzothiazine nucleus provides a sufficiently high level of analgesic (but not anti-inflammatory) properties in all N-pyridylamides of the second group with an extremely weak dependence on the spatial arrangement of the pyridine cycle. All substances presented this article proved themselves in varying degrees as analgesics and antiphlogistics. Moreover, two of them&#8212;N-(5-methylpyridin-2-yl)- and N-(pyridin-3-yl)-4-methyl-2,2-dioxo-1H-2&#955;6,1-benzothiazine-3-carboxamides&#8212;exceeded the most effective drug of oxicam type Lornoxicam by these indicators

    Synthesis, Crystal Structure, and Biological Activity of Ethyl 4-Methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate Polymorphic Forms

    No full text
    Continuing the search for new potential analgesics among the derivatives of 4-methyl-2,2-dioxo-1H-2&lambda;6,1-benzothiazine-3-carboxylic acid, the possibility of obtaining its esters by the alkylation of the corresponding sodium salt with iodoethane in dimethyl sulfoxide (DMSO) at room temperature was studied. It was found that under such conditions, together with the oxygen atom of the carboxyl group, a heteroatom of nitrogen is also alkylated. Therefore, the product of the reaction studied is a mixture of ethyl 4-methyl-2,2-dioxo-1H-2&lambda;6,1-benzothiazine-3-carboxylate (major) and its 1-ethyl-substituted analog (minor). A simple but very effective method of preparative separation of these compounds was proposed. Moreover, the heterogeneous crystallization from ethanol was revealed to result in a monoclinic polymorphic form of ethyl 4-methyl-2,2-dioxo-1H-2&lambda;6,1-benzothiazine-3-carboxylate, while the homogeneous crystallization results in its orthorhombic form. The molecular and crystal structures of both forms were confirmed by X-ray diffraction analysis, and the phase purity by powder diffraction study. The pharmacological tests carried out on the model of a carrageenan edema showed that the screening dose of 20 mg/kg of 1-ethyl-substituted ester and the orthorhombic form of its analog unsubstituted in position 1 exhibited weak anti-inflammatory and moderate analgesic effects. At the same time, the monoclinic form of ethyl 4-methyl-2,2-dioxo-1H-2&lambda;6,1-benzothiazine-3-carboxylate appeared to be both a powerful analgesic and an anti-inflammatory agent that exceeded Piroxicam and Meloxicam in the same doses by these indicators. A detailed comparative analysis of the molecular and crystal structures of two polymorphic forms of ethyl 4-methyl-2,2-dioxo-1H-2&lambda;6,1-benzothiazine-3-carboxylate was carried out using quantum chemical calculations of the energies of pairwise interactions between molecules. An explanation of the essential differences of their biological properties based on this was offered

    Classification of Fruit Flies by Gender in Images Using Smartphones and the YOLOv4-Tiny Neural Network

    No full text
    The fruit fly Drosophila melanogaster is a classic research object in genetics and systems biology. In the genetic analysis of flies, a routine task is to determine the offspring size and gender ratio in their populations. Currently, these estimates are made manually, which is a very time-consuming process. The counting and gender determination of flies can be automated by using image analysis with deep learning neural networks on mobile devices. We proposed an algorithm based on the YOLOv4-tiny network to identify Drosophila flies and determine their gender based on the protocol of taking pictures of insects on a white sheet of paper with a cell phone camera. Three strategies with different types of augmentation were used to train the network. The best performance (F1 = 0.838) was achieved using synthetic images with mosaic generation. Females gender determination is worse than that one of males. Among the factors that most strongly influencing the accuracy of fly gender recognition, the fly’s position on the paper was the most important. Increased light intensity and higher quality of the device cameras have a positive effect on the recognition accuracy. We implement our method in the FlyCounter Android app for mobile devices, which performs all the image processing steps using the device processors only. The time that the YOLOv4-tiny algorithm takes to process one image is less than 4 s

    Classification of Fruit Flies by Gender in Images Using Smartphones and the YOLOv4-Tiny Neural Network

    No full text
    The fruit fly Drosophila melanogaster is a classic research object in genetics and systems biology. In the genetic analysis of flies, a routine task is to determine the offspring size and gender ratio in their populations. Currently, these estimates are made manually, which is a very time-consuming process. The counting and gender determination of flies can be automated by using image analysis with deep learning neural networks on mobile devices. We proposed an algorithm based on the YOLOv4-tiny network to identify Drosophila flies and determine their gender based on the protocol of taking pictures of insects on a white sheet of paper with a cell phone camera. Three strategies with different types of augmentation were used to train the network. The best performance (F1 = 0.838) was achieved using synthetic images with mosaic generation. Females gender determination is worse than that one of males. Among the factors that most strongly influencing the accuracy of fly gender recognition, the fly&rsquo;s position on the paper was the most important. Increased light intensity and higher quality of the device cameras have a positive effect on the recognition accuracy. We implement our method in the FlyCounter Android app for mobile devices, which performs all the image processing steps using the device processors only. The time that the YOLOv4-tiny algorithm takes to process one image is less than 4 s

    EXTRADURAL SPINAL CORD HEMANGIOBLASTOMA: A CASE REPORT AND LITERATURE REVIEW

    No full text
    ABSTRACT Objective: Hemangioblastoma is a rare vascular sporadically occurring CNS tumor that can be associated with von Hippel-Lindau disease. Hemangioblastomas account for 2-6% of all spinal cord neoplasms and rank third among intramedullary space-occupying lesions. Methods: This was the first time in our practice that we had dealt with paravertebral hemangioblastoma with the sandglass growth pattern. The world literature describes only 3 case of a tumor with this growth pattern. Surgical and diagnostic aspects of patient treatment are considered. Results: During the operation, we adhered to the following stages: localization of the feeding vessel and of the poles of the tumor, surface dissection of the tumor, en bloc resection of the tumor, and hemostasis of the tumor cavity. Conclusions: Hemangioblastoma of extradural localization is a very rare pathology. However, when MRI signs characteristic of a vascular lesion are identified, it is necessary to carry out additional examinations, which may include CT perfusion study and, if required, selective angiography. Level of Evidence 5; Case report
    corecore