4 research outputs found

    Scholasticity in Micro-economics: is Elimination Possible? Π‘Ρ…ΠΎΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π² microeconomics: Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ элиминированиС?

    No full text
    The article conducts analysis of main provisions of the modern training course of micro-economics from the point of view of a possibility of their practical use in the process of economic activity. It shows scholasticity of marginalistic methods of identification of a rational customer choice and optimal number of production resources used by a firm. It considers and assesses possibilities of overcoming the said shortcoming by means of specification of some categories and practical adaptation of the indicator, which characterises efficiency of production resources. It draws and justifies the conclusion that efforts of elimination of manifestations of scholasticity in the modern micro-economics, based on marginalistic concept of economic analysis, cannot deliver the desired output.<br>ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· основных ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ соврСмСнного ΡƒΡ‡Π΅Π±Π½ΠΎΠ³ΠΎ курса микроэкономики с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния возмоТности ΠΈΡ… практичСского использования Π² процСссС хозяйствСнной Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Показана ΡΡ…ΠΎΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ марТиналистской ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ опрСдСлСния Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΎΠ³ΠΎ Π²Ρ‹Π±ΠΎΡ€Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства производствСнных рСсурсов, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΠΈΡ€ΠΌΠΎΠΉ. РассмотрСны ΠΈ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ возмоТности прСодолСния ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ нСдостатка ΠΏΡƒΡ‚Π΅ΠΌ уточнСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΉ ΠΈ практичСской Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ показатСля, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΡ‚Π΄Π°Ρ‡Ρƒ производствСнных рСсурсов. Π‘Π΄Π΅Π»Π°Π½ ΠΈ обоснован Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ элиминирования проявлСний схоластичности Π² соврСмСнной микроэкономикС, Π±Π°Π·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉΡΡ Π½Π° марТиналистской ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ экономичСского Π°Π½Π°Π»ΠΈΠ·Π°, Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π΄Π°Ρ‚ΡŒ ΠΆΠ΅Π»Π°Π΅ΠΌΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°

    Change of AOX1a Expression, Encoding Mitochondrial Alternative Oxidase, Influence on the Frost-Resistance of Arabidopsis Plants

    No full text
    The resistance of Arabidopsis thaliana (L.) Heynh (Columbia ecotype) plants: Col-0 line (wild type), AS-12 line (plants transformed with the construct carrying the AOX1a gene under control of the CAMV 35S promoter in the antisense orientation) and line XX-2 (plants transformed with the AOX1a gene construct in the sense orientation) (Umbach et al., 2005), to action of subzero temperature has been studied. It is shown that change of the AOX1a expression is accompanied by change of the AOX contribution in respiration and increase of the base frost-resistance of Arabidopsis plants. In the leaves of plants with overexpression of АОΠ₯1Π° was reduced activity of total superoxide dismutase (SOD), but was increased activity of guaiacol peroxidase and was less content of hydrogen peroxide. It was found that cold hardening during 7 days at 5Β°C increases the resistance of plants to the subsequent action of subzero temperature regardless of АОΠ₯1Π° expression degree. The hardening lead to activation of respiration, increase of the contribution of AOX in the respiration, a significant increase of the water-soluble carbohydrates content and increase of the activity SOD and total guaiacol peroxidases in leaves of all lines the plants. In hardened plants of Arabidopsis wild type and AOX1a transformants were detected differences in the contents of individual types of reactive oxygen species and the activity of antioxidant enzymes. The trend to decrease of hydrogen peroxide content in lines with altered expression of AOX1a was observed, but content of superoxide anion radical (SAR) was significantly lower in the AS-12 line compared with the Col-0 and XX-2 plants after hardening. The low content of SAR in leaves of AS-12 line was partly caused by increase of activity total SOD. Thus, we have identified differences in the basic frost-resistance of Arabidopsis plants with altered AOX1a expression, but significant differences in frost-resistance of hardened plants of wild-type and lines with altered AOX1a expression was not found. It was concluded that the frost-resistance of plants depends on the activity of AOX, but the decrease of its activity can be compensated by the activation of other protective systems including antioxidant enzymes

    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ АЀК ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ дыхания Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… суспСнзионной ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Saccharum officinarum

    Get PDF
    High temperatures are important abiotic stressors affecting plant growth, development and productivity. One of the consequences of unfavourable temperature effects on plants is an increase in reactive oxygen species (ROS) generation. However, what role ROS will play in the further fate of the cell under temperature stress depends on many external and internal factors. Therefore, the aim of this study was to identify the relationship between ROS content and mitochondrial function in the cells of a Saccharum officinarum suspension culture under high temperatures. The work was carried out using fluorescence microscopy and the polarographic analysis method. We found the most significant increase in ROS content in S. officinarum cells during temperature treatments (that did not cause immediate cell death in culture) was at 45 and 50 Β°C. The ROS content was largely determined by mitochondrial activity, as evidenced by a decrease in the electrochemical potential on the inner mitochondrial membrane (ΔΨm), and a simultaneous decrease of ROS levels in cells under the carbonyl cyanide m-chlorophenyl hydrazine (CCCP) treatment. The decrease in the respiratory activity of cells under high temperatures was determined by the decrease of the cytochrome pathway (CP) contribution. It should be noted that the reduction in respiration rate at a temperature of 50 Β°C preceded the death of cells in the culture, and was not a consequence of itВысокиС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π°ΠΆΠ½Ρ‹ΠΌΠΈ абиотичСскими стрСссорами, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠΌΠΈ Π½Π° рост, Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ растСний. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ образования Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода (АЀК) – ΠΎΠ΄Π½ΠΎ ΠΈΠ· послСдствий ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ влияния. Однако Ρ‚ΠΎ, ΠΊΠ°ΠΊΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΡΡ‹Π³Ρ€Π°ΡŽΡ‚ АЀК Π² дальнСйшСй ΡΡƒΠ΄ΡŒΠ±Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² условиях Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ стрСсса, зависит ΠΎΡ‚ мноТСства Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΈ Π²Π½Π΅ΡˆΠ½ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ стало выявлСниС взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ содСрТаниСм АЀК ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… суспСнзионной ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Saccharum officinarum ΠΏΡ€ΠΈ дСйствии ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€. Π”Π°Π½Π½ΠΎΠ΅ исслСдованиС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ с использованиСм флуорСсцСнтной микроскопии ΠΈ полярографичСского Π°Π½Π°Π»ΠΈΠ·Π°. Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ 45 ΠΈ 50 Β°C Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ содСрТания АЀК Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… S. officinarum, Ρ‡Ρ‚ΠΎ, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ АЀК Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΎΡΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, ΠΎ Ρ‡Π΅ΠΌ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ сниТСниС элСктрохимичСского ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ (ΔΨm) ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ сниТСниС уровня АЀК Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»Ρ†ΠΈΠ°Π½ΠΈΠ΄-ΠΌ- Ρ„Π΅Π½ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΎΠ½ΠΎΠΌ (Π‘Π‘Π‘Π ). УмСньшСниС Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ активности Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΡ€ΠΈ высокотСмпСратурном воздСйствии Π±Ρ‹Π»ΠΎ обусловлСно сниТСниСм Π²ΠΊΠ»Π°Π΄Π° Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ (ЦП). Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ сниТСниС скорости дыхания ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 50 Β°C ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΠΎΠ²Π°Π»ΠΎ Π³ΠΈΠ±Π΅Π»ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅, Π° Π½Π΅ Π±Ρ‹Π»ΠΎ Π΅Π΅ слСдствиС
    corecore