5 research outputs found
Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia
Breeding practices adopted at different farms are aimed at maximizing the profitability of pig farming. In this work, we have analyzed the genetic diversity of Large White pigs in Russia. We compared genomes of historic and modern Large White Russian breeds using 271 pig samples. We have identified 120 candidate regions associated with the differentiation of modern and historic pigs and analyzed genomic differences between the modern farms. The identified genes were associated with height, fitness, conformation, reproductive performance, and meat quality
PigLeg: prediction of swine phenotype using machine learning
Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics
Detection of genomic regions associated malformations in newborn piglets: a machine-learning approach
Background A significant proportion of perinatal losses in pigs occurs due to congenital malformations. The purpose of this study is the identification of genomic loci associated with fetal malformations in piglets. Methods The malformations were divided into two groups: associated with limb defects (piglet splay leg) and associated with other congenital anomalies found in newborn piglets. 148 Landrace and 170 Large White piglets were selected for the study. A genome-wide association study based on the gradient boosting machine algorithm was performed to identify markers associated with congenital anomalies and piglet splay leg. Results Forty-nine SNPs (23 SNPs in Landrace pigs and 26 SNPs in Large White) were associated with congenital anomalies, 22 of which were localized in genes. A total of 156 SNPs (28 SNPs in Landrace; 128 in Large White) were identified for piglet splay leg, of which 79 SNPs were localized in genes. We have demonstrated that the gradient boosting machine algorithm can identify SNPs and their combinations associated with significant selection indicators of studied malformations and productive characteristics. Data availability Genotyping and phenotyping data are available at http://www.compubioverne.group/data-and-software/
Assessing the Effect of SNPs on Litter Traits in Pigs
The reproductive ability of sows is the principle of continuous and efficient production, based on such traits as the number of piglets, the total number of parities, and the period of economic use. Currently, SNPs associated with the TNB and NBA are presented in the PigQTLdb. The aim of this work was the assessment of the SNP effects on the litter traits in Large White (LW, n = 502) and Landrace (LN, n = 432) sow breeds in a farm in Russia. 9 SNPs (SNP_1: rs80956812; SNP_2: rs81471381; SNP_3: rs80891106; SNP_4: rs81399474; SNP_5: rs81421148; SNP_6: rs81242222; SNP_7: rs81319839; SNP_8: rs81312912; SNP_9: rs80962240) were selected for the study. Associative analysis was performed using the GLM procedure in R version 3.5.1. The analysis of reproductive traits was carried out according to the results of the first parity, the second and subsequent parities, and totals for lifetime of sows. The significant effect on litter traits in LW was determined for SNP rs80956812, SNP rs81471381, SNP rs81421148, and SNP rs81399474. The significant effect on litter traits in LN was determined for SNP rs81421148 and SNP rs81319839. AKT3 gene was identified as perspective candidate gene, whose biological functions, as well as the results obtained in our work and in other studies, indicate its potential role in the reproductive process regulation in pigs. In general, the data obtained help to explain the genetic mechanisms of reproductive traits