3 research outputs found

    Copolymeric Micelles of Poly(Δ-caprolactone) and Poly(methacrylic acid) as Carriers for the Oral Delivery of Resveratrol

    No full text
    In this study, we report the development of a micellar system based on a poly(methacrylic acid)-b-poly(Δ-caprolactone)-b-poly(methacrylic acid) triblock copolymer (PMAA16-b-PCL35-b-PMAA16) for the oral delivery of resveratrol. The micellar nanocarriers were designed to comprise a PCL core for solubilizing the poorly water-soluble drug and a hydrated PMAA corona with bioadhesive properties for providing better contact with the gastrointestinal mucosa. The micelles were first formed in an aqueous media via the solvent evaporation method and then loaded with resveratrol (72% encapsulation efficiency). Studies by transmission electron microscopy (TEM) and dynamic and electrophoretic light scattering (DLS and PALS) revealed a spherical shape, nanoscopic size (100 nm) and a negative surface charge (−30 mV) of the nanocarriers. Loading of the drug slightly decreased the hydrodynamic diameter (Dh) and increased the Æș-potential of micelles. In vitro dissolution tests showed that 80% and 100% of resveratrol were released in 24 h in buffers with pH 1.2 and 6.8, respectively, whereas for the same time, not more than 10% of pure resveratrol was dissolved. A heat-induced albumin denaturation assay demonstrated the advantage of the aqueous micellar formulation of resveratrol, which possessed anti-inflammatory potential as high as that of the pure drug. Further, the micellar resveratrol (5 ”M) exerted a strong protective effect and maintained viability of mucosa epithelial HT-29 cells in a co-cultural model, representing the production of inflammatory cytokines. For comparison, the pure resveratrol at the same concentration did not protect the damaged HT-29 cells at all. Thus, the present study revealed that the PMAA-b-PCL-b-PMAA copolymeric micelles might be considered appropriate nanocarriers for the oral delivery of resveratrol

    Biopolymeric Nanogel as a Drug Delivery System for Doxorubicin—Improved Drug Stability and Enhanced Antineoplastic Activity in Skin Cancer Cells

    No full text
    In this study, doxorubicin was loaded in a chitosan–albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron microscopy revealed the spherical shape of the nanogel particles. The drug-loaded nanogel was characterized with a small diameter of 29 nm, narrow polydispersity (0.223) and positive zeta potential (+34 mV). The exposure of encapsulated doxorubicin to light (including UV irradiation and daylight) did not provoke any degradation, whereas the nonencapsulated drug was significantly degraded. In vitro studies on keratinocytes (HaCaT) and epidermoid squamous skin carcinoma cells (A-431) disclosed that the encapsulated doxorubicin was more cytotoxic on both cell lines than the pure drug was. More importantly, the cytotoxic concentration of encapsulated doxorubicin in carcinoma cells was approximately two times lower than that in keratinocytes, indicating that it would not affect them. Thus, the loading of doxorubicin into the developed chitosan–albumin nanogel definitely stabilized the drug against photodegradation and increased its antineoplastic effect on the skin cancer cell line

    Incorporation of Resveratrol in Polymeric Nanogel for Improvement of Its Protective Effects on Cellular and Microsomal Oxidative Stress Models

    No full text
    Nanogels are attractive drug delivery systems that provide high loading capacity for drug molecules, improve their stability, and increase cellular uptake. Natural antioxidants, especially polyphenols such as resveratrol, are distinguished by low aqueous solubility, which hinders therapeutic activity. Thus, in the present study, resveratrol was incorporated into nanogel particles, aiming to improve its protective effects in vitro. The nanogel was prepared from natural substances via esterification of citric acid and pentane-1,2,5-triol. High encapsulation efficiency (94.5%) was achieved by applying the solvent evaporation method. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy revealed that the resveratrol-loaded nanogel particles were spherical in shape with nanoscopic dimensions (220 nm). In vitro release tests showed that a complete release of resveratrol was achieved for 24 h, whereas at the same time the non-encapsulated drug was poorly dissolved. The protective effect of the encapsulated resveratrol against oxidative stress in fibroblast and neuroblastoma cells was significantly stronger compared to the non-encapsulated drug. Similarly, the protection in a model of iron/ascorbic acid-induced lipid peroxidation on rat liver and brain microsomes was higher with the encapsulated resveratrol. In conclusion, embedding resveratrol in this newly developed nanogel improved its biopharmaceutical properties and protective effects in oxidative stress models
    corecore