8 research outputs found
Integration of Language Identification into a Recognition System for Spoken Conversations Containing Code-Switches
ABSTRACT This paper describes the integration of language identification (LID) into a multilingual automatic speech recognition (ASR) system for spoken conversations containing code-switches between Mandarin and English. We apply a multistream approach to combine at frame level the acoustic model score and the language information, where the latter is provided by an LID component. Furthermore, we advance this multistream approach by a new method called "Language Lookahead", in which the language information of subsequent frames is used to improve accuracy. Both methods are evaluated using a set of controlled LID results with varying frame accuracies. Our results show that both approaches improve the ASR performance by at least 4% relative if the LID achieves a minimum frame accuracy of 85%
Experiments on cross-language attribute detection and phone recognition with minimal target-specific training data
A state-of-the-art automatic speech recognition (ASR) system can often achieve high accuracy for most spoken languages of interest if a large amount of speech material can be collected and used to train a set of language-specific acoustic phone models. However, designing good ASR systems with little or no language-specific speech data for resource-limited languages is still a challenging research topic. As a consequence, there has been an increasing interest in exploring knowledge sharing among a large number of languages so that a universal set of acoustic phone units can be defined to work for multiple or even for all languages. This work aims at demonstrating that a recently proposed automatic speech attribute transcription framework can play a key role in designing language-universal acoustic models by sharing speech units among all target languages at the acoustic phonetic attribute level. The language-universal acoustic models are evaluated through phone recognition. It will be shown that good cross-language attribute detection and continuous phone recognition performance can be accomplished for “unseen” languages using minimal training data from the target languages to be recognized. Furthermore, a phone-based background model (PBM) approach will be presented to improve attribute detection accuracies
A first speech recognition system for Mandarin-English code-switch conversational speech
This paper presents first steps toward a large vocabulary continuous speech recognition system (LVCSR) for conversational Mandarin-English code-switching (CS) speech. We applied state-of-the-art techniques such as speaker adaptive and discriminative training to build the first baseline system on the SEAME corpus [1] (South East Asia Mandarin-English). For acoustic modeling, we applied different phone merging approaches based on the International Phonetic Alphabet (IPA) and Bhattacharyya distance in combination with discriminative training to improve accuracy. On language model level, we investigated statistical machine translation (SMT) - based text generation approaches for building code-switching language models. Furthermore, we integrated the provided information from a language identification system (LID) into the decoding process by using a multi-stream approach. Our best 2-pass system achieves a Mixed Error Rate (MER) of 36.6% on the SEAME development set