6 research outputs found

    Multi-Level Variational Spectroscopy using a Programmable Quantum Simulator

    Full text link
    Energy spectroscopy is a powerful tool with diverse applications across various disciplines. The advent of programmable digital quantum simulators opens new possibilities for conducting spectroscopy on various models using a single device. Variational quantum-classical algorithms have emerged as a promising approach for achieving such tasks on near-term quantum simulators, despite facing significant quantum and classical resource overheads. Here, we experimentally demonstrate multi-level variational spectroscopy for fundamental many-body Hamiltonians using a superconducting programmable digital quantum simulator. By exploiting symmetries, we effectively reduce circuit depth and optimization parameters allowing us to go beyond the ground state. Combined with the subspace search method, we achieve full spectroscopy for a 4-qubit Heisenberg spin chain, yielding an average deviation of 0.13 between experimental and theoretical energies, assuming unity coupling strength. Our method, when extended to 8-qubit Heisenberg and transverse-field Ising Hamiltonians, successfully determines the three lowest energy levels. In achieving the above, we introduce a circuit-agnostic waveform compilation method that enhances the robustness of our simulator against signal crosstalk. Our study highlights symmetry-assisted resource efficiency in variational quantum algorithms and lays the foundation for practical spectroscopy on near-term quantum simulators, with potential applications in quantum chemistry and condensed matter physics

    Symmetry enhanced variational quantum eigensolver

    Full text link
    The variational quantum-classical algorithms are the most promising approach for achieving quantum advantage on near-term quantum simulators. Among these methods, the variational quantum eigensolver has attracted a lot of attention in recent years. While it is very effective for simulating the ground state of many-body systems, its generalization to excited states becomes very resource demanding. Here, we show that this issue can significantly be improved by exploiting the symmetries of the Hamiltonian. The improvement is even more effective for higher energy eigenstates. We introduce two methods for incorporating the symmetries. In the first approach, called hardware symmetry preserving, all the symmetries are included in the design of the circuit. In the second approach, the cost function is updated to include the symmetries. The hardware symmetry preserving approach indeed outperforms the second approach. However, integrating all symmetries in the design of the circuit could be extremely challenging. Therefore, we introduce hybrid symmetry preserving method in which symmetries are divided between the circuit and the classical cost function. This allows to harness the advantage of symmetries while preventing sophisticated circuit design.Comment: 14 pages, 7 figure

    Variational quantum simulation of long-range interacting systems

    Full text link
    Current quantum simulators suffer from multiple limitations such as short coherence time, noisy operations, faulty readout and restricted qubit connectivity. Variational quantum algorithms are the most promising approach in near-term quantum simulation to achieve quantum advantage over classical computers. Here, we explore variational quantum algorithms, with different levels of qubit connectivity, for digital simulation of the ground state of long-range interacting systems as well as generation of spin squeezed states. We find that as the interaction becomes more long-ranged, the variational algorithms become less efficient, achieving lower fidelity and demanding more optimization iterations. In particular, when the system is near its criticality the efficiency is even lower. Increasing the connectivity between distant qubits improves the results, even with less quantum and classical resources. Our results show that by mixing circuit layers with different levels of connectivity one can sensibly improve the performance. Interestingly, the order of layers becomes very important and grouping the layers with long-distance connectivity at the beginning of the circuit outperforms other permutations. The same design of circuits can also be used to variationally produce spin squeezed states, as a resource for quantum metrology.Comment: 11 pages, 7 figure
    corecore