11 research outputs found

    Behavioral Data Analysis of Robot-Assisted Autism Spectrum Disorder (ASD) Interventions Based on Lattice Computing Techniques

    No full text
    Recent years have witnessed the proliferation of social robots in various domains including special education. However, specialized tools to assess their effect on human behavior, as well as to holistically design social robot applications, are often missing. In response, this work presents novel tools for analysis of human behavior data regarding robot-assisted special education. The objectives include, first, an understanding of human behavior in response to an array of robot actions and, second, an improved intervention design based on suitable mathematical instruments. To achieve these objectives, Lattice Computing (LC) models in conjunction with machine learning techniques have been employed to construct a representation of a child’s behavioral state. Using data collected during real-world robot-assisted interventions with children diagnosed with Autism Spectrum Disorder (ASD) and the aforementioned behavioral state representation, time series of behavioral states were constructed. The paper then investigates the causal relationship between specific robot actions and the observed child behavioral states in order to determine how the different interaction modalities of the social robot affected the child’s behavior

    Evaluation of the ARTutor augmented reality educational platform in tertiary education

    No full text
    Abstract Augmented Reality (AR) has seen a significant increase in applications in a number of fields in recent years. One of the areas in which AR has been applied to is education, most commonly by means of augmenting educational books. The present paper builds on previous work by using an AR authoring environment and a mobile application, developed by the authors, in undergraduate courses at the Eastern Macedonia & Thrace Institute of Technology. Using the authoring tool, the students were able to enhance existing secondary education textbooks by adding digital content to them, and, using the mobile application, view the digital content and retrieve information from the textual content of the books by asking questions in natural language form. At the end of the semester, the students were asked to evaluate the ARTutor platform by means of questionnaires and the SECTIONS framework. This study presents and discusses the results of this evaluation exercise and proposes new directions of the research

    Time-Series of Distributions Forecasting in Agricultural Applications: An Intervals’ Numbers Approach

    No full text
    This work represents any distribution of data by an Intervals’ Number (IN), hence it represents all-order data statistics, using a “small” number of L intervals. The INs considered are induced from images of grapes that ripen. The objective is the accurate prediction of grape maturity. Based on an established algebra of INs, an optimizable IN-regressor is proposed, implementable on a neural architecture, toward predicting future INs from past INs. A recursive scheme tests the capacity of the IN-regressor to learn the physical “law” that generates the non-stationary time-series of INs. Computational experiments demonstrate comparatively the effectiveness of the proposed techniques

    Coordinated Navigation of Two Agricultural Robots in a Vineyard: A Simulation Study

    No full text
    The development of an effective agricultural robot presents various challenges in actuation, localization, navigation, sensing, etc., depending on the prescribed task. Moreover, when multiple robots are engaged in an agricultural task, this requires appropriate coordination strategies to be developed to ensure safe, effective, and efficient operation. This paper presents a simulation study that demonstrates a robust coordination strategy for the navigation of two heterogeneous robots, where one robot is the expert and the second robot is the helper in a vineyard. The robots are equipped with localization and navigation capabilities so that they can navigate the environment and appropriately position themselves in the work area. A modular collaborative algorithm is proposed for the coordinated navigation of the two robots in the field via a communications module. Furthermore, the robots are also able to position themselves accurately relative to each other using a vision module in order to effectively perform their cooperative tasks. For the experiments, a realistic simulation environment is considered, and the various control mechanisms are described. Experiments were carried out to investigate the robustness of the various algorithms and provide preliminary results before real-life implementation

    WINkNN: Windowed Intervals’ Number kNN Classifier for Efficient Time-Series Applications

    No full text
    Our interest is in time series classification regarding cyber–physical systems (CPSs) with emphasis in human-robot interaction. We propose an extension of the k nearest neighbor (kNN) classifier to time-series classification using intervals’ numbers (INs). More specifically, we partition a time-series into windows of equal length and from each window data we induce a distribution which is represented by an IN. This preserves the time dimension in the representation. All-order data statistics, represented by an IN, are employed implicitly as features; moreover, parametric non-linearities are introduced in order to tune the geometrical relationship (i.e., the distance) between signals and consequently tune classification performance. In conclusion, we introduce the windowed IN kNN (WINkNN) classifier whose application is demonstrated comparatively in two benchmark datasets regarding, first, electroencephalography (EEG) signals and, second, audio signals. The results by WINkNN are superior in both problems; in addition, no ad-hoc data preprocessing is required. Potential future work is discussed

    Brain Signals Classification Based on Fuzzy Lattice Reasoning

    No full text
    Cyber-Physical System (CPS) applications including human-robot interaction call for automated reasoning for rational decision-making. In the latter context, typically, audio-visual signals are employed. ΀his work considers brain signals for emotion recognition towards an effective human-robot interaction. An ElectroEncephaloGraphy (EEG) signal here is represented by an Intervals’ Number (IN). An IN-based, optimizable parametric k Nearest Neighbor (kNN) classifier scheme for decision-making by fuzzy lattice reasoning (FLR) is proposed, where the conventional distance between two points is replaced by a fuzzy order function (σ) for reasoning-by-analogy. A main advantage of the employment of INs is that no ad hoc feature extraction is required since an IN may represent all-order data statistics, the latter are the features considered implicitly. Four different fuzzy order functions are employed in this work. Experimental results demonstrate comparably the good performance of the proposed techniques

    An Overview of Cooperative Robotics in Agriculture

    No full text
    Agricultural robotics has been a popular subject in recent years from an academic as well as a commercial point of view. This is because agricultural robotics addresses critical issues such as seasonal shortages in manual labor, e.g., during harvest, as well as the increasing concern regarding environmentally friendly practices. On one hand, several individual agricultural robots have already been developed for specific tasks (e.g., for monitoring, spraying, harvesting, transport, etc.) with varying degrees of effectiveness. On the other hand, the use of cooperative teams of agricultural robots in farming tasks is not as widespread; yet, it is an emerging trend. This paper presents a comprehensive overview of the work carried out so far in the area of cooperative agricultural robotics and identifies the state-of-the-art. This paper also outlines challenges to be addressed in fully automating agricultural production; the latter is promising for sustaining an increasingly vast human population, especially in cases of pandemics such as the recent COVID-19 pandemic
    corecore