586 research outputs found

    Quantification of light attenuation in optically cleared mouse brains

    Get PDF
    Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high-resolution, three-dimensional images of biological structures deep within the tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue and applied it to the mouse brain. Three clearing techniques were compared: BABB (1:2 mixture of benzyl alcohol and benzyl benzoate, also known as Murray’s clear), pBABB (peroxide BABB, a modification of BABB which includes the use of hydrogen peroxide), and passive CLARITY. We found that BABB and pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and our results show that light is most attenuated in regions with high lipid content. We provide a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues

    Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI

    Get PDF
    Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7  ±  1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n  =  9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland–Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were  −31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and  −10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p  =  0.0085) and HA fraction (p  <  0.0001), but not other parameters. Improved mean differences and Bland–Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers

    Neoadjuvant chemotherapy and trastuzumab versus neoadjuvant chemotherapy followed by post-operative trastuzumab for patients with HER2-positive breast cancer

    Get PDF
    Neoadjuvant chemotherapy plus trastuzumab (NCT) increases the rate of pathological complete response (pCR) and event-free survival (EFS) compared to neoadjuvant chemotherapy (NC) alone in women with HER2 positive breast cancer (BC). pCR in this setting is associated with improved EFS. Whether NCT preferentially improves EFS in comparison to NC followed by adjuvant trastuzumab initiated postoperatively (NCAT) has not been addressed. Using clinical data from women with HER2 positive BC treated at 7 European institutions between 2007 and 2010 we sought to investigate the impact on breast cancer outcomes of concomitant (NCT) versus sequential (NCAT) treatment in HER2 positive early BC. The unadjusted hazard ratio (HR) for event free survival with NCT compared with NCAT was 0.63 (95% CI 0.37–1.08; p = 0.091). Multivariable analysis revealed that treatment group, tumour size and ER status were significantly associated with EFS from diagnosis. In the whole group NCT was associated with a reduced risk of an event relative to NCAT, an effect that was confined to ER negative (HR: 0.25; 95% CI, 0.10–0.62; p = 0.003) as opposed to ER positive tumours (HR: 1.07; 95% CI, 0.46–2.52; p = 0.869). HER2 positive/ER negative BC treated with NC gain greatest survival benefit when trastuzumab is administered in both the neoadjuvant and adjuvant period rather than in the adjuvant period alone. These data support the early introduction of targeted combination therapy in HER2 positive/ER negative BC

    Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI

    Get PDF
    Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver dynamic contrast enhanced (DCE) MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7±1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n=9) measured at seven days. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and seven-day reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p=0.066), total liver blood flow (TLBF)(p=0.101), hepatic arterial (HA) fraction (p=0.895), mean transit time (MTT)(p=0.646), distribution volume (DV)(p=0.890) were not significantly different. Seven-day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% Limits-of-Agreement (BA95%LoA) ±27.9%, Coefficient of Variation (CoV) 61.4% vs 9.3%, ±35.5%, 81.7% respectively without correction). Seven-day uncorrected PV perfusion was also improved (mean difference 9.3 ml/min/100g, BA95%LoA ±506.1 ml/min/100g, CoV 64.1% vs 0.9 ml/min/100g, ±562.8 ml/min/100g, 65.1% respectively with correction) as was uncorrected TLBF(mean difference 43.8 ml/min/100g, BA95%LoA ±586.7 ml/min/100g, CoV 58.3% vs 13.3 ml/min/100g, ±661.5 ml/min/100g, 60.9% respectively with correction). Reproducibility of uncorrected MTT was similar (uncorrected mean difference 2.4s, BA95%LoA ±26.7s, CoV 60.8% uncorrected vs 3.7s, ±27.8s, 62.0% respectively with correction), as was and DV (uncorrected mean difference 14.1%, BA95%LoA ±48.2%, CoV 24.7% vs 10.3%, ±46.0%, 23.9% respectively with correction). Cardiac output AIF correction does not significantly affect the estimation of hepatic perfusion parameters but demonstrates improvements in normal volunteer seven-day HA fraction reproducibility, but deterioration in PV perfusion and TLBF reproducibility. Improved HA fraction reproducibility maybe important as arterialisation of liver perfusion is increased in chronic liver disease and within malignant liver lesions

    Non-invasive measurement of hepatic venous oxygen saturation (ShvOâ‚‚) with quantitative susceptibility mapping in normal mouse liver and livers bearing colorectal metastases

    Get PDF
    PURPOSE: The purpose of this prospective study was to investigate the potential of QSM to noninvasively measure hepatic venous oxygen saturation (ShvO2). Materials & Methods: All animal studies were performed in accordance with the UK Home Office Animals Science Procedures Act (1986) and UK National Cancer Research Institute (NCRI) guidelines. QSM data was acquired from a cohort of mice (n=10) under both normoxic (medical air, 21% O2/balance N), and hyperoxic conditions (100% O2). Susceptibility measurements were taken from large branches of the portal and hepatic vein under each condition and were used to calculate venous oxygen saturation in each vessel. Blood was extracted from the IVC of three mice under norm- and hyperoxic conditions, and oxygen saturation was measured using a blood gas analyser to act as a gold standard. QSM data was also acquired from a cohort of mice bearing colorectal liver metastases (CRLM). SvO2 was calculated from susceptibility measurements made in the portal and hepatic veins, and compared to the healthy animals. RESULTS: SvO2 calculated from QSM measurements showed a significant increase of 14.93% in the portal vein (p < 0.05), and an increase of 21.39% in the hepatic vein (p < 0.01). Calculated results showed excellent agreement with those from the blood gas analyser (26.14% increase). ShvO2 was significantly lower in the disease cohort (30.18 ± 11.6%), than the healthy animals (52.67 ± 17.8%) (p < 0.05), but differences in the portal vein were not significant. CONCLUSION: QSM is a feasible tool for non-invasively measuring hepatic venous oxygen saturation and can detect differences in oxygen consumption in livers bearing colorectal metastases

    Grey matter sublayer thickness estimation in the mouse cerebellum

    Get PDF
    The cerebellar grey matter morphology is an important feature to study neurodegenerative diseases such as Alzheimer’s disease or Down’s syndrome. Its volume or thickness is commonly used as a surrogate imaging biomarker for such diseases. Most studies about grey matter thickness estimation focused on the cortex, and little attention has been drawn on the morphology of the cerebellum. Using ex vivo highresolution MRI, it is now possible to visualise the different cell layers in the mouse cerebellum. In this work, we introduce a framework to extract the Purkinje layer within the grey matter, enabling the estimation of the thickness of the cerebellar grey matter, the granular layer and molecular layer from gadolinium-enhanced ex vivo mouse brain MRI. Application to mouse model of Down’s syndrome found reduced cortical and layer thicknesses in the transchromosomic group

    Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging-preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis

    Get PDF
    Purpose: MR elastography and magnetization-tagging use liver stiffness (LS) measurements to diagnose fibrosis but require physical drivers, specialist sequences and post-processing. Here we evaluate non-rigid registration of dynamic two-dimensional cine MRI images to measure cardiac-induced liver deformation (LD) as a measure of LS by (i) assessing preclinical proof-of-concept, (ii) clinical reproducibility and inter-reader variability, (iii) the effects of hepatic hemodynamic changes and (iv) feasibility in patients with cirrhosis. / Methods: Sprague–Dawley rats (n = 21 bile duct ligated (BDL), n = 17 sham-operated controls) and fasted patients with liver cirrhosis (n = 11) and healthy volunteers (HVs, n = 10) underwent spoiled gradient-echo short-axis cardiac cine MRI studies at 9.4 T (rodents) and 3.0 T (humans). LD measurements were obtained from intrahepatic sub-cardiac regions-of-interest close to the diaphragmatic margin. One-week reproducibility and prandial stress induced hemodynamic changes were assessed in healthy volunteers. / Results: Normalized LD was higher in BDL (1.304 ± 0.062) compared with sham-operated rats (1.058 ± 0.045, P = 0.0031). HV seven-day reproducibility Bland–Altman (BA) limits-of-agreement (LoAs) were ± 0.028 a.u. and inter-reader variability BA LoAs were ± 0.030 a.u. Post-prandial LD increases were non-significant (+ 0.0083 ± 0.0076 a.u., P = 0.3028) and uncorrelated with PV flow changes (r = 0.42, p = 0.2219). LD measurements successfully obtained from all patients were not significantly higher in cirrhotics (0.102 ± 0.0099 a.u.) compared with HVs (0.080 ± 0.0063 a.u., P = 0.0847). / Conclusion: Cardiac-induced LD is a conceptually reasonable approach from preclinical studies, measurements demonstrate good reproducibility and inter-reader variability, are less likely to be affected by hepatic hemodynamic changes and are feasible in patients with cirrhosis
    • …
    corecore