1,251 research outputs found

    Non-gaussianity from the second-order cosmological perturbation

    Full text link
    Several conserved and/or gauge invariant quantities described as the second-order curvature perturbation have been given in the literature. We revisit various scenarios for the generation of second-order non-gaussianity in the primordial curvature perturbation \zeta, employing for the first time a unified notation and focusing on the normalisation f_{NL} of the bispectrum. When the classical curvature perturbation first appears a few Hubble times after horizon exit, |f_{NL}| is much less than 1 and is, therefore, negligible. Thereafter \zeta (and hence f_{NL}) is conserved as long as the pressure is a unique function of energy density (adiabatic pressure). Non-adiabatic pressure comes presumably only from the effect of fields, other than the one pointing along the inflationary trajectory, which are light during inflation (`light non-inflaton fields'). During single-component inflation f_{NL} is constant, but multi-component inflation might generate |f_{NL}| \sim 1 or bigger. Preheating can affect f_{NL} only in atypical scenarios where it involves light non-inflaton fields. The curvaton scenario typically gives f_{NL} \ll -1 or f_{NL} = +5/4. The inhomogeneous reheating scenario can give a wide range of values for f_{NL}. Unless there is a detection, observation can eventually provide a limit |f_{NL}| \lsim 1, at which level it will be crucial to calculate the precise observational limit using second order theory.Comment: Latex file in Revtex style. 13 pages, 1 figure. v2: minor changes. Discussion in Subsection VI-A enlarged. References added. Conclusions unchanged. v3: minor typographic changes. Correlated and uncorrelated \chi^2 non-gaussianity concepts and consequences introduced. Section VI-A enlarged. Small change in Table I. References updated and added. Conclusions unchanged. Version to appear in Physical Review

    Chaotic Inflation with Time-Variable Space Dimensions

    Get PDF
    Assuming the space dimension is not constant but decreases during the expansion of the Universe, we study chaotic inflation with the potential m2ϕ2/2m^2\phi^2/2. Our investigations are based on a model Universe with variable space dimensions. We write down field equations in the slow-roll approximation, and define slow-roll parameters by assuming the number of space dimensions decreases continuously as the Universe expands. The dynamical character of the space dimension shifts the initial and final value of the inflaton field to larger values. We obtain an upper limit for the space dimension at the Planck length. This result is in agreement with previous works for the effective time variation of the Newtonian gravitational constant in a model Universe with variable space dimensions.Comment: 19 pages, To be published in Int.J.Mod.Phys.D. Minor changes to match accepted versio

    Generating the curvature perturbation at the end of inflation

    Full text link
    The dominant contribution to the primordial curvature perturbation may be generated at the end of inflation. Taking the end of inflation to be sudden, formulas are presented for the spectrum, spectral tilt and non-gaussianity. They are evaluated for a minimal extension of the original hybrid inflation model.Comment: 5 pages. v3: as it will appear in JCA

    Observational constraints on the spectral index of the cosmological curvature perturbation

    Get PDF
    We evaluate the observational constraints on the spectral index nn, in the context of the Λ\LambdaCDM hypothesis which represents the simplest viable cosmology. We first take nn to be practically scale-independent. Ignoring reionization, we find at a nominal 2-σ\sigma level n1.0±0.1n\simeq 1.0 \pm 0.1. If we make the more realisitic assumption that reionization occurs when a fraction f105f\sim 10^{-5} to 1 of the matter has collapsed, the 2-σ\sigma lower bound is unchanged while the 1-σ\sigma bound rises slightly. These constraints are compared with the prediction of various inflation models. Then we investigate the two-parameter scale-dependent spectral index, predicted by running-mass inflation models, and find that present data allow significant scale-dependence of nn, which occurs in a physically reasonable regime of parameter space.Comment: ReVTeX, 15 pages, 5 figures and 3 tables, uses epsf.sty Improved treatment of reionization and small bug fixed in the constant n case; more convenient parameterization and better treatment of the n dependence in the CMB anisotropy for the running mass case; conclusions basically unchanged; references adde

    Contribution of the hybrid inflation waterfall to the primordial curvature perturbation

    Full text link
    A contribution ζχ\zeta_\chi to the curvature perturbation will be generated during the waterfall that ends hybrid inflation, that may be significant on small scales. In particular, it may lead to excessive black hole formation. We here consider standard hybrid inflation, where the tachyonic mass of the waterfall field is much bigger than the Hubble parameter. We calculate ζχ\zeta_\chi in the simplest case, and see why earlier calculations of ζχ\zeta_\chi are incorrect.Comment: Simpler and more complete results, especiallly for delta N approac

    Non-gaussianity at tree and one-loop levels from vector field perturbations

    Full text link
    We study the spectrum P_\zeta and bispectrum B_\zeta of the primordial curvature perturbation \zeta when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree level terms (both (either) in P_\zeta and (or) in B_\zeta) and viceversa. The level of non-gaussianity in the bispectrum, f_{NL}, is calculated and related to the level of statistical anisotropy in the power spectrum, g_\zeta. For very small amounts of statistical anisotropy in the power spectrum, the level of non-gaussianity may be very high, in some cases exceeding the current observational limit.Comment: LaTeX file, 11 pages, Main body: 8 pages, References: 3 pages. v2: Minor corrections. References added. Conclusions unchanged. v3: Minor corrections. Some references added and others updated. Version accepted for publication in Physical Review

    Non-Gaussianity in Axion N-flation Models

    Get PDF
    We study perturbations in the multifield axion N-flation model, taking account of the full cosine potential. We find significant differences from previous analyses which made a quadratic approximation to the potential. The tensor-to-scalar ratio and the scalar spectral index move to lower values, which nevertheless provide an acceptable fit to observation. Most significantly, we find that the bispectrum non-Gaussianity parameter fNL may be large, typically of order 10 for moderate values of the axion decay constant, increasing to of order 100 for decay constants slightly smaller than the Planck scale. Such a non-Gaussian fraction is detectable. We argue that this property is generic in multifield models of hilltop inflation

    Adiabatic Modes in Cosmology

    Get PDF
    We show that the field equations for cosmological perturbations in Newtonian gauge always have an adiabatic solution, for which a quantity R{\cal R} is non-zero and constant in all eras in the limit of large wavelength, so that it can be used to connect observed cosmological fluctuations in this mode with those at very early times. There is also a second adiabatic mode, for which R{\cal R} vanishes for large wavelength, and in general there may be non-adiabatic modes as well. These conclusions apply in all eras and whatever the constituents of the universe, under only a mild technical assumption about the wavelength dependence of the field equations for large wave length. In the absence of anisotropic inertia, the perturbations in the adiabatic modes are given for large wavelength by universal formulas in terms of the Robertson--Walker scale factor. We discuss an apparent discrepancy between these results and what appears to be a conservation law in all modes found for large wavelength in synchronous gauge: it turns out that, although equivalent, synchronous and Newtonian gauges suggest inequivalent assumptions about the behavior of the perturbations for large wavelength.Comment: 24 pages, Latex, no special macro
    corecore