138 research outputs found

    Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes

    Get PDF
    It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombinant Arg-degrading enzymes, e.g. arginine deiminase (ADI) or arginase, they die because of Arg starvation; whereas normal cells which express ASS are able to survive. A pegylated ADI (ADI-PEG20) has been developed for clinical trials for advanced melanoma and HCC; and favorable results have been obtained. ADI-PEG20 treatment induces autophagy in auxotrophic cancer cells leading to cell death. Clinical studies in melanoma patients show that re-expression of ASS is associated with ADI-PEG20 resistance. ADI-PEG20 treatment down-regulates the expression of HIF-1α but up-regulates c-Myc in culture melanoma cells. Induction of ASS by ADI-PEG20 involves positive regulators c-Myc and Sp4 and negative regulator HIF1α. Since both HIF-1α and c-Myc play important roles in cancer cell energy metabolism, together these results suggest that targeted cancer cell metabolism through modulation of HIF-1α and c-Myc expression may improve the efficacy of ADI-PEG20 in treating Arg auxotrophic tumors

    Topoisomerase I inhibitors in the treatment of primary CNS malignancies: an update on recent trends

    No full text
    High grade primary CNS gliomas hold some of the worst prognoses of any malignancy, with the vast majority of patients dying within two years of diagnosis, even with aggressive modern treatments. Surgical resection and radiotherapy are cornerstones of treatment when possible. In spite of many years of research, only recently has management with chemotherapy been able to prolong survival in patients with high grade gliomas, albeit only modestly at best. Topoisomerase I (TOP1) inhibitors target an enzyme critical for DNA replication and cell-cycle progression; they cross the blood-brain barrier and have antitumor activity against glioblastoma cells in vitro. The most frequently associated toxicities are neutropenia and diarrhea, but are often manageable. The two most used agents are irinotecan and topotecan. Due to enhanced cytochrome CY3A4/5 enzyme activity, irinotecan dose must be adjusted with concomitant enzyme-inducing antiepileptic drug usage; the data is less clear regarding the effects on topotecan. Clinical trials in patients with recurrent malignant glioma have evaluated TOP1 inhibitors as monotherapy and in combination with other agents. There is evidence for using topotecan with radiotherapy. Irinotecan has limited efficacy as monotherapy, but shows promise in combination with other agents, particularly temozolomide and bevacizumab. Newer generation TOP1 inhibitors are currently being evaluated in phase I trials. TOP1 inhibitors show promising activity in patients with primary CNS malignancies and warrant further study

    Arginine deprivation in cancer therapy

    No full text
    There has been an increased and renewed interest in metabolic therapy for cancer, particularly Arg deprivation. The purpose of this review is to highlight recent studies that focus on Arg-dependent malignancies with Arginine (Arg)-degrading enzymes, including arginase and Arg deiminase. New developments in this area include understanding of the role of most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase and its expression and therapeutic relevance in different tumors. Recent studies have also shed light on the mechanism of tumor cell death with Arg deprivation, with arginase and pegylated Arg deiminase. Particularly important is understanding the mechanism of resistance that cancers develop after such drug exposure. Finally, recent clinical trials have been performed or are ongoing to use Arg deprivation as treatment for advanced malignancies. Arg deprivation is a promising approach for the treatment of various malignancies
    corecore