56 research outputs found

    Synaptic vulnerability in spinal muscular atrophy

    Get PDF
    Mounting evidence suggests that synaptic connections are early pathological targets in many neurodegenerative diseases, including motor neuron disease. A better understanding of synaptic pathology is therefore likely to be critical in order to develop effective therapeutic strategies. Spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and postsynaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here I have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/- ;SMN2 and Smn-/-;SMN2;Δ7 mouse models of SMA. Results imply that synaptic degeneration is an early and significant event in SMA, with progressive denervation and neurofilament accumulation being present at early symptomatic time points. I have identified selectively vulnerable motor units, which appear to conform to a distinct developmental subtype compared to more stable motor units. I have also identified significant postsynaptic atrophy which does no correlate with pre-synaptic denervation, suggesting that there is a requirement for Smn in both muscle and nerve and pathological events can occur in both tissues independently. Rigorous investigation of lower motor neuron development, connectivity and gene expression at pre-symptomatic time points revealed developmental abnormalities do not underlie neuromuscular vulnerability in SMA. Equivalent gene expression analysis at end-stage time points has implicated growth factor signalling and extracellular matrix integrity in SMA pathology. Using an alternative model of early onset neurodegeneration, I provide evidence that the processes regulating morphologically distinct types of synaptic degeneration are also mechanistically distinct. In summary, in this work I highlight the importance and incidence of synaptic pathology in mouse models of spinal muscular atrophy and provide mechanistic insight into the processes regulating neurodegeneration

    Engineering three-dimensional bone macro-tissues by guided fusion of cell spheroids

    Get PDF
    IntroductionBioassembly techniques for the application of scaffold-free tissue engineering approaches have evolved in recent years toward producing larger tissue equivalents that structurally and functionally mimic native tissues. This study aims to upscale a 3-dimensional bone in-vitro model through bioassembly of differentiated rat osteoblast (dROb) spheroids with the potential to develop and mature into a bone macrotissue.MethodsdROb spheroids in control and mineralization media at different seeding densities (1 × 104, 5 × 104, and 1 × 105 cells) were assessed for cell proliferation and viability by trypan blue staining, for necrotic core by hematoxylin and eosin staining, and for extracellular calcium by Alizarin red and Von Kossa staining. Then, a novel approach was developed to bioassemble dROb spheroids in pillar array supports using a customized bioassembly system. Pillar array supports were custom-designed and printed using Formlabs Clear Resin® by Formlabs Form2 printer. These supports were used as temporary frameworks for spheroid bioassembly until fusion occurred. Supports were then removed to allow scaffold-free growth and maturation of fused spheroids. Morphological and molecular analyses were performed to understand their structural and functional aspects.ResultsSpheroids of all seeding densities proliferated till day 14, and mineralization began with the cessation of proliferation. Necrotic core size increased over time with increased spheroid size. After the bioassembly of spheroids, the morphological assessment revealed the fusion of spheroids over time into a single macrotissue of more than 2.5 mm in size with mineral formation. Molecular assessment at different time points revealed osteogenic maturation based on the presence of osteocalcin, downregulation of Runx2 (p < 0.001), and upregulated alkaline phosphatase (p < 0.01).DiscussionWith the novel bioassembly approach used here, 3D bone macrotissues were successfully fabricated which mimicked physiological osteogenesis both morphologically and molecularly. This biofabrication approach has potential applications in bone tissue engineering, contributing to research related to osteoporosis and other recurrent bone ailments

    Engineering three-dimensional bone macro-tissues by guided fusion of cell spheroids

    Get PDF
    Introduction: Bioassembly techniques for the application of scaffold-freetissue engineering approaches have evolved in recent years towardproducing larger tissue equivalents that structurally and functionally mimicnative tissues. This study aims to upscale a 3-dimensional bone in-vitromodel through bioassembly of differentiated rat osteoblast (dROb) spheroidswith the potential to develop and mature into a bone macrotissue.Methods: dROb spheroids in control and mineralization media at differentseeding densities (1 × 104, 5 × 104, and 1 × 105 cells) were assessed for cellproliferation and viability by trypan blue staining, for necrotic core byhematoxylin and eosin staining, and for extracellular calcium by Alizarin redand Von Kossa staining. Then, a novel approach was developed tobioassemble dROb spheroids in pillar array supports using a customizedbioassembly system. Pillar array supports were custom-designed and printedusing Formlabs Clear Resin® by Formlabs Form2 printer. These supports wereused as temporary frameworks for spheroid bioassembly until fusionoccurred. Supports were then removed to allow scaffold-free growth andmaturation of fused spheroids. Morphological and molecular analyses wereperformed to understand their structural and functional aspects.Results: Spheroids of all seeding densities proliferated till day 14, andmineralization began with the cessation of proliferation. Necrotic core sizeincreased over time with increased spheroid size. After the bioassembly ofspheroids, the morphological assessment revealed the fusion of spheroidsover time into a single macrotissue of more than 2.5 mm in size with mineralformation. Molecular assessment at different time points revealed osteogenicmaturation based on the presence of osteocalcin, downregulation of Runx2(p < 0.001), and upregulated alkaline phosphatase (p < 0.01).Discussion: With the novel bioassembly approach used here, 3D bonemacrotissues were successfully fabricated which mimicked physiological osteogenesis both morphologically and molecularly. This biofabricationapproach has potential applications in bone tissue engineering,contributing to research related to osteoporosis and other recurrentbone ailments

    Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy

    Get PDF
    INTRODUCTION: The term motor neuron disease encompasses a spectrum of disorders in which motor neurons are the lost. Importantly, while some motor neurons are lost early in disease and others remain intact at disease end-stage. This creates a valuable experimental paradigm to investigate the factors that regulate motor neuron vulnerability. Spinal muscular atrophy is a childhood motor neuron disease caused by mutations or deletions in the SMN1 gene. Here, we have performed transcriptional analysis on differentially vulnerable motor neurons from an intermediate mouse model of Spinal muscular atrophy at a presymptomatic time point. RESULTS: We have characterised two differentially vulnerable populations, differing in the level neuromuscular junction loss. Transcriptional analysis on motor neuron cell bodies revealed that reduced Smn levels correlate with a reduction of transcripts associated with the ribosome, rRNA binding, ubiquitination and oxidative phosphorylation. Furthermore, P53 pathway activation precedes neuromuscular junction loss, suggesting that denervation may be a consequence, rather than a cause of motor neuron death in Spinal muscular atrophy. Finally, increased vulnerability correlates with a decrease in the positive regulation of DNA repair. CONCLUSIONS: This study identifies pathways related to the function of Smn and associated with differential motor unit vulnerability, thus presenting a number of exciting targets for future therapeutic development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-015-0231-1) contains supplementary material, which is available to authorized users

    Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis:Converging roads to therapeutic development

    Get PDF
    Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases

    Local CpG density affects the trajectory and variance of age-associated DNA methylation changes

    Get PDF
    Acknowledgements We thank Riccardo Marioni, Chris Haley, Ailith Ewing, David Porteous, Chris Ponting, Rob Illingworth, Tamir Chandra, Sara Hagg, Yunzhang Wang, Chantriolnt-Andreas Kapourani, Nick Gilbert, Hannes Becher and members of the Sproul lab for helpful discussions about the study and the manuscript. This work has made use of the resources provided by the University of Edinburgh digital research services and the MRC IGC compute cluster. We are grateful to all the families who took part in the Generation Scotland study along with the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the entire Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants, and nurses. Peer review information Anahita Bishop and Kevin Pang were the primary editors of this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Review history The review history is available as Additional file 3. Funding DS is a Cancer Research UK Career Development fellow (reference C47648/A20837), and work in his laboratory is also supported by an MRC university grant to the MRC Human Genetics Unit. LK is a cross-disciplinary postdoctoral fellow supported by funding from the University of Edinburgh and Medical Research Council (MC_UU_00009/2). S.R.C. and I.J.D. were supported by a National Institutes of Health (NIH) research grant R01AG054628, and S.R.C is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (221890/Z/20/Z). AMM is supported by the Wellcome Trust (104036/Z/14/Z, 216767/Z/19/Z, 220857/Z/20/Z) and UKRI MRC (MC_PC_17209, MR/S035818/1). PMV acknowledges support from the Australian National Health and Medical Research Council (1113400) and the Australian Research Council (FL180100072). DMH is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Reference 213674/Z/18/Z). We thank the LBC1936 participants and team members who contributed to the study. Further study information can be found at https://www.ed.ac.uk/lothian-birth-cohorts. The LBC1936 is supported by a jointly funded grant from the BBSRC and ESRC (BB/W008793/1), and also by Age UK (Disconnected Mind project), the Medical Research Council (G0701120, G1001245, MR/M013111/1, MR/R024065/1), and the University of Edinburgh. Genotyping of LBC1936 was funded by the BBSRC (BB/F019394/1), and methylation typing of LBC1936 was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, The Wellcome Trust Institutional Strategic Support Fund, The University of Edinburgh, and The University of Queensland. Work on Generation Scotland was supported by a Wellcome Strategic Award “STratifying Resilience and Depression Longitudinally” (STRADL; 104036/Z/14/Z) to AMM, KLE, and others, and an MRC Mental Health Data Pathfinder Grant (MC_PC_17209) to AMM. Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). DNA methylation profiling and analysis of the GS:SFHS samples was supported by Wellcome Investigator Award 220857/Z/20/Z and Grant 104036/Z/14/Z (PI: AM McIntosh) and through funding from NARSAD (Ref: 27404; awardee: Dr DM Howard) and the Royal College of Physicians of Edinburgh (Sim Fellowship; Awardee: Dr HC Whalley).Peer reviewedPublisher PD
    corecore