27,225 research outputs found
Searching for Millisecond Pulsars: Surveys, Techniques and Prospects
Searches for millisecond pulsars (which we here loosely define as those with
periods 20 ms) in the Galactic field have undergone a renaissance in the
past five years. New or recently refurbished radio telescopes utilizing cooled
receivers and state-of-the art digital data acquisition systems are carrying
out surveys of the entire sky at a variety of radio frequencies. Targeted
searches for millisecond pulsars in point sources identified by the {\it Fermi}
Gamma-ray Space Telescope have proved phenomenally successful, with over 50
discoveries in the past five years. The current sample of millisecond pulsars
now numbers almost 200 and, for the first time in 25 years, now outnumbers
their counterparts in Galactic globular clusters. While many of these searches
are motivated to find pulsars which form part of pulsar timing arrays, a wide
variety of interesting systems are now being found. Following a brief overview
of the millisecond pulsar phenomenon, we describe these searches and present
some of the highlights of the new discoveries in the past decade. We conclude
with predictions and prospects for ongoing and future surveys.Comment: 16 pages, 3 figures, accepted for publication in Classical and
Quantum gravit
Cold plasma processing of local planetary ores for oxygen and metallurgically important metals
The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products
Cold plasma processing of local planetary ores for oxygen and metallurgically important metals
The utilization of a cold or nonequilibrium plasma in chlorination processing is discussed. Titanium dioxide (TiO2) was successfully chlorinated at temperatures between 700 and 900 C without the aid of carbon. In addition to these initial experiments, a technique was developed for determining the temperature of a specimen in a plasma. Development of that technique has required evaluating the emissivity of TiO2, ZrO2, and FeOTiO2 and analyzing the specimen temperature in a plasma as a function of both power absorbed by the plasma and the pressure of the plasma. The mass spectrometer was also calibrated with TiCl4 and CCl4 vapor
Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy
The Department of Materials Science and Engineering (MSE) is investigating the use of monatomic chlorine produced in a cold plasma to recover oxygen and metallurgically significant metals from lunar materials. Development of techniques for the production of the chlorine radical (and other energetic radicals for these processes) using local planetary resources is a key step for a successful approach. It was demonstrated terrestrially that the use of UV light to energize the photogeneration of OH radicals from ozone or hydrogen peroxide in aqueous solutions can lead to rapid reaction rates for the breakdown of toxic organic compounds in water. A key question is how to use the expanded solar resource at the lunar surface to generate process-useful radicals. This project is aimed at investigating that question
Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy
A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed
Flow alteration-ecology relationships in Ozark Highland streams: Consequences for fish, crayfish and macroinvertebrate assemblages
We examined flowalteration-ecology relationships in benthic macroinvertebrate, fish, and crayfish assemblages in Ozark Highland streams, USA, over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We hypothesized that: 1) there would be temporal variation in flow alteration-ecology relationships between the two years, 2) flow alteration-ecology relationshipswould be stronger during the drought year vs the flood year, and 3) fish assemblages would show the strongest relationships with flow alteration. We used a quantitative richest-targeted habitat (RTH) method and a qualitative multihabitat (QMH) method to collect macroinvertebrates at 16 USGS gaged sites during both years. We used backpack electrofishing to sample fish and crayfish at 17 sites in 2012 and 11 sites in 2013.Weused redundancy analysis to relate biological response metrics, including richness, diversity, density, and community-based metrics, to flow alteration.We found temporal variation in flow alteration-ecology relationships for all taxa, and that relationships differed greatly between assemblages. We found relationships were stronger for macroinvertebrates during the drought year but not for other assemblages, and that fish assemblage relationships were not stronger than the invertebrate taxa. Magnitude of average flow, frequency of high flow, magnitude of high flow, and duration of high flow were the most important categories of flow alteration metrics across taxa. Alteration of high and average flows was more important than alteration of low flows. Of 32 important flow alteration metrics across years and assemblages, 19 were significantly altered relative to expected values. Ecological responses differed substantially between drought and flood years, and this is likely to be exacerbated with predicted climate change scenarios. Differences in flow alteration-ecology relationships among taxonomic groups and temporal variation in relationships illustrate that a complex suite of variables should be considered for effective conservation of stream communities related to flow alteration
Hedge funds, credit risk transfer and financial stability.
Over the past decade, central bankers and financial institution supervisors have sharpened their focus on the increasingly important role that private pools of investment funds play in global financial markets. The growth in these pools has contributed significantly to market efficiency and financial stability by expanding liquidity in many financial markets, improving price discovery, and, ultimately, lowering the costs of capital. Private investment pools and the alternative investment strategies they pursue have contributed to a signifi cant expansion of the global markets and have helped accelerate the evolution in traded credit products such as credit derivatives, collateralized debt obligations, and the securitization of an increasing array of traditionally illiquid assets. However, because of the lack of transparency and an established regime of supervision of these investment vehicles, policymakers and supervisors have become concerned about customer protection and the potential for systemic risk. This paper discusses some of the key issues confronting supervisors in light of the recent growth of private investment pools and the rapid developments in the area of credit risk transfer, with a particular focus on the implications of these trends regarding systemic risk and financial stability.
Effect of hybridization on 4d→4f spectra in light lanthanides
The effect of the hybridization of 4f electrons on La, Ce, and Pr tripositive ions with ligand states or conduction electrons was simulated by reducing the Slater integrals involving the 4f electrons by 10% or 20%, depending on whether the integrand involves one or two 4f electrons, respectively. The dipole-allowed 4d→4f spectra were calculated. Observable effects, changes in line energies, and oscillator strengths, were compared with limited data available for ionic and metallic solids containing these lanthanides, and for Ce vapor. Many of the observed changes in the 4d→4f spectra attributed to hybridization effects are found qualitatively in the calculation
Improving green manure quality with phosphate rocks in Ontario Canada
Phosphate rock (PR) was applied to one conventional and two organic dairy fields and planted with buckwheat (Fagopyrum esculentum) as a green manure crop. In total, five types of PR were applied at three application rates in order to determine the yield, concentration of P in the aboveground tissue and the P uptake of buckwheat. It was found that PR of relatively high carbonate substitution and small particle diameter could increase buckwheat tissue concentrations to a quality such that mineralization of the buckwheat mulch could occur. Buckwheat mulch and residual PR increased soil P flux as determined by anion exchange membranes in situ in the following spring. This provides evidence that buckwheat of high P quality has the potential to supply P to a subsequent crop
Adaptive evolution of molecular phenotypes
Molecular phenotypes link genomic information with organismic functions,
fitness, and evolution. Quantitative traits are complex phenotypes that depend
on multiple genomic loci. In this paper, we study the adaptive evolution of a
quantitative trait under time-dependent selection, which arises from
environmental changes or through fitness interactions with other co-evolving
phenotypes. We analyze a model of trait evolution under mutations and genetic
drift in a single-peak fitness seascape. The fitness peak performs a
constrained random walk in the trait amplitude, which determines the
time-dependent trait optimum in a given population. We derive analytical
expressions for the distribution of the time-dependent trait divergence between
populations and of the trait diversity within populations. Based on this
solution, we develop a method to infer adaptive evolution of quantitative
traits. Specifically, we show that the ratio of the average trait divergence
and the diversity is a universal function of evolutionary time, which predicts
the stabilizing strength and the driving rate of the fitness seascape. From an
information-theoretic point of view, this function measures the
macro-evolutionary entropy in a population ensemble, which determines the
predictability of the evolutionary process. Our solution also quantifies two
key characteristics of adapting populations: the cumulative fitness flux, which
measures the total amount of adaptation, and the adaptive load, which is the
fitness cost due to a population's lag behind the fitness peak.Comment: Figures are not optimally displayed in Firefo
- …