261 research outputs found

    Design of a wireless active sensing unit for localized structural health monitoring

    Full text link
    The recent years have witnessed an increasing interest in using wireless structural monitoring as a low-cost alternative to tethered monitoring systems. Previous work considered wireless sensors strictly as passive elements in the monitoring system, responsible only for collection of response measurements. This paper explores expansion of the wireless structural monitoring paradigm by including actuation capabilities in the design of a wireless active sensing unit. To validate the performance of the prototype unit in structural health monitoring applications, an aluminum plate monitored by piezoelectric active sensors is used. Piezoelectric actuators mounted to the surface of the plate are commanded by the wireless active sensing unit to excite and record the element. System identification models are then used to model the linear relationship between the input excitation and the corresponding plate response. A novel damage detection methodology is proposed that uses the characteristic equation roots obtained from an autoregressive with exogenous input time-series model. Complex roots (poles) of the model's characteristic equation are sensitive to structural damage causing a change in their location on the complex plane. Using the mean value of pole clusters, the migration of model poles are shown to be well correlated to the severity of crack damage intentionally introduced in the plate. Copyright © 2005 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48702/1/77_ftp.pd

    Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications

    Full text link
    This paper describes the application of electrical impedance tomography (EIT) to demonstrate the multifunctionality of carbon nanocomposite thin films under various types of environmental stimuli. Carbon nanotube (CNT) thin films are fabricated by a layer-by-layer (LbL) technique and mounted with electrodes along their boundaries. The response of the thin films to various stimuli is investigated by relying on electric current excitation and corresponding boundary potential measurements. The spatial conductivity variations are reconstructed based on a mathematical model for the EIT technique. Here, the ability of the EIT method to provide two-dimensional mapping of the conductivity of CNT thin films is validated by (1) electrically imaging intentional structural defects in the thin films and (2) mapping the film’s response to various pH environments. The ability to spatially image the conductivity of CNT thin films holds many promises for developing multifunctional CNT-based sensing skins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58135/2/nano7_31_315501.pd

    Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    Full text link
    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90810/1/0964-1726_20_6_065009.pd

    Implementation of a closed-loop structural control system using wireless sensor networks

    Full text link
    Wireless sensor networks have rapidly matured in recent years to offer data acquisition capabilities on par with those of traditional tethered data acquisition systems. Entire structural monitoring systems assembled from wireless sensors have proven to be low cost, easy to install, and accurate. However, the functionality of wireless sensors can be further extended to include actuation capabilities. Wireless sensors capable of actuating a structure could serve as building blocks of future generations of structural control systems. In this study, a wireless sensor prototype capable of data acquisition, computational analysis and actuation is proposed for use in a real-time structural control system. The performance of a wireless control system is illustrated using a full-scale structure controlled by a semi-active magnetorheological (MR) damper and a network of wireless sensors. One wireless sensor designated as a controller automates the task of collecting state data, calculating control forces, and issuing commands to the MR damper, all in real time. Additional wireless sensors are installed to measure the acceleration and velocity response of each system degree of freedom. Base motion is applied to the structure to simulate seismic excitations while the wireless control system mitigates inter-storey drift response of the structure. An optimal linear quadratic regulation solution is formulated for embedment within the computational cores of the wireless sensors. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60230/1/214_ftp.pd

    An experimental investigation of the data delivery performance of a wireless sensing unit designed for structural health monitoring

    Full text link
    This study explores the reliability of a wireless sensing unit by testing it in a real-world university laboratory environment. The unit employs off-the-shelf products for their key components, while a flexible payload scheme was adopted for radio packet transmission to maximize throughput and minimize latency. The testing consists of two main parts: (1) a series of loopback tests using two off-the-shelf radio components with carrier frequencies of 900 MHz and 2.4 GHz, respectively, and (2) wireless transmission of a shake table response to a periodic swept sine excitation. The performance of the wireless channel is examined in each part of the study. Through this experimental investigation, it is validated that a loopback test may be used as a fast prototyping approach to characterize the complex transmitting environment of a structure in which a wireless monitoring system is installed. Various factors leading to signal attenuation are ranked according to their effects on packet delivery performance. Transmitting range and building materials are among the leading factors causing packet loss (and therefore data loss) in this specific testing environment. The severity of interference from 802.11b wireless systems in close proximity to the wireless sensing unit was investigated. Some preliminary results on the influence of operating rotating machinery and human activities are to wireless sensors were investigated. The results presented herein offer a guideline for applying wireless sensing within real-world structures so that the reliability of the wireless monitoring system is maximized. Due to uncertainties associated with the reliability of wireless communications, statistical analysis is performed on the collected time histories to reveal the underlying patterns associated with data loss. Temporal correlations of data loss were measured and found to be related to the adopted radio. A statistical distribution of the size of consecutive lost data points was further derived from the collected data. Such results have identified the need to further develop: (1) reliable communication protocols to reduce these losses in data and information, and (2) robust data processing and system identification tools to anticipate and explicitly handle any data loss. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60229/1/205_ftp.pd

    Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing

    Full text link
    Since the discovery of carbon nanotubes, researchers have been fascinated by their mechanical and electrical properties, as well as their versatility for a wide array of applications. In this study, a carbon nanotube–polyelectrolyte composite multilayer thin film fabricated by a layer-by-layer (LbL) method is proposed to develop a multifunctional material for measuring strain and corrosion processes. LbL fabrication of carbon nanotube composites yields mechanically strong thin films in which multiple sensing transduction mechanisms can be encoded. For example, judicious selection of carbon nanotube concentrations and polyelectrolyte matrices can yield thin films that exhibit changes in their electrical properties to strain and pH. In this study, experimental results suggest a consistent trend between carbon nanotube concentrations and strain sensor sensitivity. Furthermore, by simply altering the type of polyelectrolyte used, pH sensors of high sensitivity can be developed to potentially monitor environmental factors suggesting corrosion of metallic structural materials (e.g. steel, aluminum).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58148/2/sms7_2_022.pd

    Experimental verification of a wireless sensing and control system for structural control using MR dampers

    Full text link
    The performance aspects of a wireless ‘active’ sensor, including the reliability of the wireless communication channel for real-time data delivery and its application to feedback structural control, are explored in this study. First, the control of magnetorheological (MR) dampers using wireless sensors is examined. Second, the application of the MR-damper to actively control a half-scale three-storey steel building excited at its base by shaking table is studied using a wireless control system assembled from wireless active sensors. With an MR damper installed on each floor (three dampers total), structural responses during seismic excitation are measured by the system's wireless active sensors and wirelessly communicated to each other; upon receipt of response data, the wireless sensor interfaced to each MR damper calculates a desired control action using an LQG controller implemented in the wireless sensor's computational core. In this system, the wireless active sensor is responsible for the reception of response data, determination of optimal control forces, and the issuing of command signals to the MR damper. Various control solutions are formulated in this study and embedded in the wireless control system including centralized and decentralized control algorithms. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56121/1/682_ftp.pd

    Embedding damage detection algorithms in a wireless sensing unit for operational power efficiency

    Full text link
    A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49012/2/sms4_4_018.pd

    Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors

    Full text link
    As researchers continue to explore wireless sensors for use in structural monitoring systems, validation of field performance must be done using actual civil structures. In this study, a network of low-cost wireless sensors was installed in the Geumdang Bridge, Korea to monitor the bridge response to truck loading. Such installations allow researchers to quantify the accuracy and robustness of wireless monitoring systems within the complex environment encountered in the field. In total, 14 wireless sensors were installed in the concrete box girder span of the Geumdang Bridge to record acceleration responses to forced vibrations introduced by a calibrated truck. In order to enhance the resolution of the capacitive accelerometers interfaced to the wireless sensors, a signal conditioning circuit that amplifies and filters low-level accelerometer outputs is proposed. The performance of the complete wireless monitoring system is compared to a commercial tethered monitoring system that was installed in parallel. The performance of the wireless monitoring system is shown to be comparable to that of the tethered counterpart. Computational resources (e.g. microcontrollers) coupled with each wireless sensor allow the sensor to estimate modal parameters of the bridge such as modal frequencies and operational displacement shapes. This form of distributed processing of measurement data by a network of wireless sensors represents a new data management paradigm associated with wireless structural monitoring.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49011/2/sms6_6_008.pd

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
    • …
    corecore