22,007 research outputs found
Development of Empirical Models to Rate Spruce-Fir Stands in Michigan\u27s Upper Peninsula for Hazard From the Spruce Budworm (Lepidoptera: Tortricidae): A Case History
The procedure used to develop empirical models which estimate potential spruce budworm impact to spruce-fir stands in Michigan\u27s Upper Peninsula is reviewed. Criteria used to select independent variables, to select the best of alternative multiple linear regression models. and to validate final models are discussed. Preliminary, intermediate, and final results demonstrate a cyclic pattern to the development procedure. Validation is emphasized as an important step in the procedure. Implications of using the hazard-rating system as a pest management tool in the stand management process are discussed
Self-pulsation dynamics in narrow stripe semiconductor lasers
In this paper, we address the physical origin of self-pulsation in narrow stripe edge emitting semiconductor lasers. We present both experimental time-averaged polarization-resolved near-field measurements performed with a charged-coupled device camera and picosecond time resolved near-field measurements performed with a streak camera. These results demonstrate dynamic spatial-hole burning during pulse formation and evolution. We conclude from these experimental results that the dominant process which drives the self-pulsation in this type of laser diode is carrier induced effective refractive index change induced by the spatial-hole burning
Constraints on the density dependence of the symmetry energy
Collisions involving 112Sn and 124Sn nuclei have been simulated with the
improved Quantum Molecular Dynamics transport model. The results of the
calculations reproduce isospin diffusion data from two different observables
and the ratios of neutron and proton spectra. By comparing these data to
calculations performed over a range of symmetry energies at saturation density
and different representations of the density dependence of the symmetry energy,
constraints on the density dependence of the symmetry energy at sub-normal
density are obtained. Results from present work are compared to constraints put
forward in other recent analysis.Comment: 8 pages, 4 figures,accepted for publication in Phy. Rev. Let
Root anatomical traits contribute to deeper rooting of maize under compacted field conditions
© The Author(s) 2020. To better understand the role of root anatomy in regulating plant adaptation to soil mechanical impedance, 12 maize lines were evaluated in two soils with and without compaction treatments under field conditions. Penetrometer resistance was 1–2 MPa greater in the surface 30 cm of the compacted plots at a water content of 17–20% (v/v). Root thickening in response to compaction varied among genotypes and was negatively associated with rooting depth at one field site under non-compacted plots. Thickening was not associated with rooting depth on compacted plots. Genotypic variation in root anatomy was related to rooting depth. Deeper-rooting plants were associated with reduced cortical cell file number in combination with greater mid cortical cell area for node 3 roots. For node 4, roots with increased aerenchyma were deeper roots. A greater influence of anatomy on rooting depth was observed for the thinner root classes. We found no evidence that root thickening is related to deeper rooting in compacted soil; however, anatomical traits are important, especially for thinner root classes
Using Samples of Unequal Length in Generalized Method of Moments Estimation
Many applications in financial economics use data series with different starting or ending dates. This paper describes an estimation method, based on the generalized method of moments (GMM), which makes use of all available data for each moment condition. We introduce two asymptotically equivalent estimators that are consistent, symptotically normal, and more efficient asymptotically
than standard GMM. We illustrate these estimators in an application to mutual fund performance evaluation. Both estimators are extended to general patterns of missing data, and shown to be more efficient than estimators that ignore intervals of the data, and thus more efficient than standard
GMM
Using Samples of Unequal Length in Generalized Method of Moments Estimation
This paper describes estimation methods, based on the generalized method of moments (GMM), applicable in settings where time series have different starting or ending dates. We introduce two estimators that are more efficient asymptotically than standard GMM. We apply these to estimating predictive regressions in international data and show that the use of the full sample affects inference for assets with data available over the full period as well as for assets with data available for a subset of the period. Monte Carlo experiments demonstrate that reductions hold for small-sample standard errors as well as asymptotic ones
Species of Coccidia (Apicomplexa: Eimeriidae) in Shrews from Alaska, U.S.A., and Northeastern Siberia, Russia, with Description of Two New Species
Fecal samples (n = 636) from 10 species of shrews collected in Alaska (n = 540) and northeastern Siberia (n = 96) were examined for the presence of coccidia (Apicomplexa: Eimeriidae). Five distinct oocyst morphotypes were observed. Three types were consistent with oocysts of previously recognized coccidia species from other shrew hosts. These were Eimeria inyoni, E. vagrantis, and Isospora brevicauda, originally described from the inyo shrew (Sorex tenellus), dusky shrew (S. monticolus), and northern short-tailed shrew (Blarina brevicauda), respectively. We found 5 new host records for E. inyoni, 3 for E. vagrantis, and 3 for I. brevicauda. The 2 additional oocyst morphotypes, both from the tundra shrew (Sorex tundrensis), are putative new species. Sporulated oocysts of Eimeria beringiacea n. sp. are subspheroidal, 17.7 × 15.6 μm (14-24 × 13-20 μm) with a length (L)/width (W) ratio of 1.1 (1.0-1.4); these lack a micropyle (M), an oocyst residuum (OR), and a polar granule (PG). Sporocysts are ellipsoidal, 10.3 × 6.1 μm (7-14 × 4-8 μm), with a L/W ratio of 1.7 (1.3–2.3) and have a Stieda body (SB), Substieda body (SSB), and sporocyst residuum (SR). Oocysts of Eimeria tundraensis n. sp. are spheroidal to subspheroidal, 24.8 × 23.5 μm (23-26 × 22-25 μm), with a L/W ratio of 1.1 (1.0-1.2); these lack a M and OR, but a single PG is present. Sporocysts are elongate ellipsoidal, 15.4 × 8.3 μm (13-17 × 7-9 μm), with a L/W ratio of 1.9 (1.4-2.1) and have a SB, SSB, and SR
- …