9 research outputs found
Divergent effects of oxytocin treatment of obese diabetic mice on adiposity and diabetes
Oxytocin has been suggested as a novel therapeutic against obesity, because it induces weight loss and improves glucose tolerance in diet-induced obese rodents. A recent clinical pilot study confirmed the oxytocin-induced weight-reducing effect in obese nondiabetic subjects. Nevertheless, the mechanisms involved and the impact on the main comorbidity associated with obesity, type 2 diabetes, are unknown. Lean and ob/ob mice (model of obesity, hyperinsulinemia, and diabetes) were treated for 2 weeks with different doses of oxytocin, analogues with longer half-life (carbetocin) or higher oxytocin receptor specificity ([Thr4,Gly7]-oxytocin). Food and water intake, body weight, and glycemia were measured daily. Glucose, insulin, and pyruvate tolerance, body composition, several hormones, metabolites, gene expression, as well as enzyme activities were determined. Although no effect of oxytocin on the main parameters was observed in lean mice, the treatment dose-dependently reduced food intake and body weight gain in ob/ob animals. Carbetocin behaved similarly to oxytocin, whereas [Thr4,Gly7]-oxytocin (TGOT) and a low oxytocin dose decreased body weight gain without affecting food intake. The body weight gain-reducing effect was limited to the fat mass only, with decreased lipid uptake, lipogenesis, and inflammation, combined with increased futile cycling in abdominal adipose tissue. Surprisingly, oxytocin treatment of ob/ob mice was accompanied by a worsening of basal glycemia and glucose tolerance, likely due to increased corticosterone levels and stimulation of hepatic gluconeogenesis. These results impose careful selection of the conditions in which oxytocin treatment should be beneficial for obesity and its comorbidities, and their relevance for human pathology needs to be determined
Leptin as a Potential Regulator of FGF21
Fibroblast growth factor 21 (FGF21), a potent metabolic regulator, has been shown to improve insulin sensitivity in animal models of insulin resistance. Several studies have focused on identifying mediators of FGF21 effects. However, the identification of factors involved in FGF21 regulation is far from complete. As leptin is a potent metabolic modulator as well, we aimed at characterizing whether leptin may regulate FGF21
Ectopic UCP1 Overexpression in White Adipose Tissue Improves Insulin Sensitivity in Lou/C Rats, a Model of Obesity Resistance
Brown adipose tissue (BAT), characterized by the presence of uncoupling protein 1 (UCP1), has been described as metabolically active in humans. Lou/C rats, originating from the Wistar strain, are resistant to obesity. We previously demonstrated that Lou/C animals express UCP1 in beige adipocytes in inguinal white adipose tissue (iWAT), suggesting a role of this protein in processes such as the control of body weight and the observed improved insulin sensitivity. A β3 adrenergic agonist was administered for 2 weeks in Wistar and Lou/C rats to activate UCP1 and delineate its metabolic impact. The treatment brought about decreases in fat mass and improvements in insulin sensitivity in both groups. In BAT, UCP1 expression increased similarly in response to the treatment in the two groups. However, the intervention induced the appearance of beige cells in iWAT, associated with a marked increase in UCP1 expression, in Lou/C rats only. This increase was correlated with a markedly enhanced glucose uptake measured during euglycemic-hyperinsulinemic clamps, suggesting a role of beige cells in this process. Activation of UCP1 in ectopic tissues, such as beige cells in iWAT, may be an interesting therapeutic approach to prevent body weight gain, decrease fat mass, and improve insulin sensitivity
Bucky Ball Organizes Germ Plasm Assembly in Zebrafish
In many animals, gamete formation during embryogenesis is specified by maternal cytoplasmic determinants termed germ plasm [1, 2]. During oogenesis, germ plasm forms a distinct cellular structure such as pole plasm in Drosophila or the Balbiani body, an aggregate of organelles also found in mammals [3–10]. However, in vertebrates, the key regulators of germ plasm assembly are largely unknown. Here, we show that, at the beginning of zebrafish oogenesis, the germ plasm defect in bucky ball (buc) mutants precedes the loss of polarity, indicating that Buc primarily controls Balbiani body formation. Moreover, we molecularly identify the buc gene, which is exclusively expressed in the ovary with a novel, dynamic mRNA localization pattern first detectable within the Balbiani body. We find that a Buc-GFP fusion localizes to the Balbiani body during oogenesis and with the germ plasm during early embryogenesis, consistent with a role in germ plasm formation. Interestingly, overexpression of buc seems to generate ectopic germ cells in the zebrafish embryo. Because we discovered buc homologs in many vertebrate genomes, including mammals, these results identify buc as the first gene necessary and sufficient for germ plasm organization in vertebrates