4 research outputs found

    Generation of Flat Top Surface Plasmon Polariton Beams by Near Field Holography

    No full text
    Controlling the shape and trajectory of the surface plasmon polariton (SPP) beams is the key to all SPP-based applications. In this paper, a novel plasmonic device that can generate in-plane flat top SPP beams is designed by near field holography. The relationship between the transverse profile intensity of the generated flat top SPP beams and the structural parameters of the designed device is analyzed. The results of this paper can provide the possibility for further practical application utilizing flat top SPP beams

    Defect-Induced Tunable Permittivity of Epsilon-Near-Zero in Indium Tin Oxide Thin Films

    No full text
    Defect-induced tunable permittivity of Epsilon-Near-Zero (ENZ) in indium tin oxide (ITO) thin films via annealing at different temperatures with mixed gases (98% Ar, 2% O2) was reported. Red-shift of λENZ (Epsilon-Near-Zero wavelength) from 1422 nm to 1995 nm in wavelength was observed. The modulation of permittivity is dominated by the transformation of plasma oscillation frequency and carrier concentration depending on Drude model, which was produced by the formation of structural defects and the reduction of oxygen vacancy defects during annealing. The evolution of defects can be inferred by means of X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The optical bandgaps (Eg) were investigated to explain the existence of defect states. And the formation of structure defects and the electric field enhancement were further verified by finite-difference time domain (FDTD) simulation

    Broadband absorption tailoring of SiO2/Cu/ITO arrays based on hybrid coupled resonance mode

    No full text
    Sub-wavelength artificial photonic structures can be introduced to tailor and modulate the spectrum of materials, thus expanding the optical applications of these materials. On the basis of SiO2/Cu/ITO arrays, a hybrid coupled resonance (HCR) mechanism, including the epsilon-near-zero (ENZ) mode of ITO, local surface plasmon resonance (LSPR) mode and the microstructural gap resonance (GR) mode, was proposed and researched by systematically regulating the array period and layer thickness. The optical absorptions of the arrays were simulated under different conditions by the finite-difference time-domain (FDTD) method. ITO films were prepared and characterized to verify the existence of ENZ mode and Mie theory was used to describe the LSPR mode. The cross-sectional electric field distribution was analyzed while SiO2/Cu/ITO multilayers were also fabricated, of which absorption was measured and calculated by Macleod simulation to prove the existence of GR and LSPR mode. Finally, the broad-band tailoring of optical absorption peaks from 673 nm to 1873 nm with the intensities from 1.8 to 0.41 was realized, which expands the applications of ITO-based plasmonic metamaterials in the near infrared (NIR) region.Published versio

    Polarization Controllable Device for Simultaneous Generation of Surface Plasmon Polariton Bessel-Like Beams and Bottle Beams

    No full text
    Realizing multiple beam shaping functionalities in a single plasmonic device is crucial for photonic integration. Both plasmonic Bessel-like beams and bottle beams have potential applications in nanophotonics, particularly in plasmonic based circuits, near field optical trapping, and micro manipulation. Thus, it is very interesting to find new approaches for simultaneous generation of surface plasmon polariton Bessel-like beams and bottle beams in a single photonic device. Two types of polarization-dependent devices, which consist of arrays of spatially distributed sub-wavelength rectangular slits, are designed. The array of slits are specially arranged to construct an X-shaped or an IXI-shaped array, namely X-shaped device and IXI-shaped devices, respectively. Under illumination of circularly polarized light, plasmonic zero-order and first-order Bessel-like beams can be simultaneously generated on both sides of X-shaped devices. Plasmonic Bessel-like beam and bottle beam can be simultaneously generated on both sides of IXI-shaped devices. By changing the handedness of circularly polarized light, for both X-shaped and IXI-shaped devices, the positions of the generated plasmonic beams on either side of device can be dynamically interchanged
    corecore