3,877 research outputs found

    Microscopic and Quantitative Investigations on PST Ti-Al / Ti Reaction Diffusion Couples

    Get PDF
    Interdiffusion in multi-phase diffusion couples of polycrystalline Ti and polysynthetically twinned (PST) Ti-49.3 at.% Al, with the diffusion direction parallel to the lamellar planes, is investigated in the temperature range 973 – 1173 K. A reaction zone (RZ) of the α2-Ti3Al phase forms between the end materials and exhibits deeper penetration in the α2 lamellae than in the primary γ lamellae. The mass balance and the lamellar thickness across the RZ / PST interface are believed to be the major factors that lead to the different behaviors in the penetration depth of the RZ. Direct measurements of the RZ thickness reveal a parabolic growth of the RZ, indicating a diffusion-controlled growth macroscopically. Concentration profiles from the Ti, through the RZ, into the PST γ and α2 lamellae are measured by x-ray spectroscopy in a transmission electron microscope. Deviations from a diffusion-controlled composition profile indicate some extent of interface-controlled growth. Plateaus are seen in the concentration profiles in the RZ adjacent to the RZ/PST interface, extending through most of the deeply penetrated well region. The interfacial energy and strain energy are possible reasons for the plateaus. The interdiffusion coefficients are found to be largely independent of composition with a temperature dependence that obeys the Arrhenius relationship

    Interdiffusion and Phase Behavior in Polysynthetically Twinned (PST) TiAl / Ti Diffusion Couples

    Get PDF
    Diffusion couples of pure Ti and polysynthetically twinned (PST) TiAl (49.3 at.% Al) were prepared by high vacuum hot-pressing, with the bonding interface perpendicular to the lamellar planes. Diffusion experiments were carried out by annealing the couples in the same furnace at 650, 700 and 850oC for various times. The cross-section of the couple was studied using scanning electron microscopy (SEM) and quantitative wavelength-dispersive x-ray spectroscopy (WDS). A reaction layer whose composition is close to that of the stoichiometric α2–Ti3Al phase formed along the PST TiAl / Ti bonding interface in PST TiAl side. Direct measurements of the thickness of the reaction zone were performed at different phase regions and various boundaries. By assuming the thickness of the reaction zone increases as (Dt)1/2, where D is the diffusion coefficient and t is the annealing time, the diffusion coefficients at these temperatures were calculated. Composition profiles in the reaction zone, along the lamellae and at the lamellar interfaces were obtained by WDS analyses

    Characterizations of Lamellar Interfaces and Segregations in a PST-TiAl Intermetallic Alloy by an Analytical Scanning Transmission Electron Microscope

    Get PDF
    Polysynthetically-twinned titanium aluminide (PST-TiAl), a fully lamellar γ-TiAl+α2- Ti3Al dual-phase alloy, is under evaluation for applications in rotary components in aircraft and automobile industries due to its high specific strength, and a high strength-retention capability at elevated-temperatures. However, the low ductility at room- to mid-high temperatures of the material hinders its application. Additions of certain tertiary elements to the binary TiAl system appear to improve the ductility at room- to mid-high temperatures, thus a balance among strength, ductility, and fracture toughness can be expected. In this article, segregation of tertiary elements to the lamellar interfaces is investigated. Single crystals of a TiAl with 0.6% atomic percentage tertiary additions are grown by an optical float-zone method. Segregation to the lamellar interfaces and the microstructure of the interfaces are investigated. Structures of the lamellar interfaces are characterized, and microchemistry and distribution habits of these elements along the γ+α2 lamellar boundaries as well as the γ-γ lamellar and domain boundaries are analyzed

    Tuning the resonant frequency of single-walled carbon nanotube bundle oscillators through electron-beam-induced cross-link formations

    Get PDF
    The authors investigate the effect of electron irradiation on the resonant frequency of single-walled carbon nanotube bundles. Electron beam irradiation was employed to induce the formation of intertube cross-linking. An increase in the resonant frequency was observed at low electron doses as the bending modulus was enhanced by cross-link formation. Higher doses induced amorphization and knock-on damage in the bundle, resulting in an overall reduction of the bending modulus. The effect of stiffness enhancement is more pronounced in larger diameter bundles due to the more compliant initial condition. At 45 nm diameter, an increase in bending modulus of 115% is observed

    Fine-Structure Map of the Histidine Transport Genes in \u3cem\u3eSalmonella typhimurium\u3c/em\u3e

    Get PDF
    Afine-structure genetic map of the histidine transport region of the Salmonella typhimurium chromosome was constructed. Twenty-five deletion mutants were isolated and used for dividing the hisJ and hisP genes into 8 and 13 regions respectively. A total of 308 mutations, spontaneous and mutagen induced, have been placed in these regions by deletion mapping. The histidine transport operon is presumed to be constituted of genes dhuA, hisJ, and hisP, and the regulation of the hosP and hisJ genes by dhuA is discussed. The orientation of this operon relative to purF has been established by three-point crosses as being: purF duhA hisJ hisP

    Filling Single Wall Carbon Nanotubes with Metal Chloride and Metal Nanowires and Imaging with Scanning Transmission Electron Microscopy

    Get PDF
    Nanowires of magnetic metals (Ho, Gd) have been synthesized inside the hollow interior of single wall carbon nanotubes by the sealed-tube reaction. Amongst the d- and f-series metal chlorides investigated in this study, HoCl3 and GdCl3 fill the SWNTs to a significantly higher extent than FeCl2 and CoCl2. HoCl3 and GdCl3 nanowires have been transformed into the respective metal nanowires via the reduction of the chloride nanowires. The nanowires have been imaged using high-resolution transmission electron microscopy and scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy carried out in conjunction with STEM confirmed the presence of metal chloride and metal nanowires

    Atomic Structure of a Grain Boundary in a Metallic Alloy: Combined Electron Microscope and Theoretical Study

    Get PDF
    A synergistic high-resolution electron microscopy (HREM) and theoretical analysis of the structure of a grain boundary in copper containing bismuth is presented. The calculation of the structure of the boundary were carried out using N-body empirical potentials constructed using results of ab initio full-potential linear-muffin-tin-orbital calculations. Excellent agreement between the calculated and observed structures is shown by comparing a through-focal series of observed and calculated images. It is shown for the first time that HREM combined with computer modeling employing realistic empirical potentials can decipher with a great accuracy the structure of boundaries containing multiple atomic species

    Single Wall Carbon Nanotubes Filled with Metallocenes: a First Example of Non-Fullerene Peapods

    Get PDF
    We report the synthesis and analysis of metallocenes (ferrocene, chromocene, ruthenocene, vanadocene, tungstenocene-dihydride) encapsulated in single wall carbon nanotubes (SWNTs). In the case of ferrocene, efficient filling of the SWNTs was accomplished from both the liquid and the vapor phase. The other two metallocenes were filled from the vapor phase. High resolution transmission electron microscopy reveals single molecular chains of metallocenes inside SWNTs. Molecules move under the electron beam in the SWNTs indicating the absence of strong chemical bonds between each other and the SWNT wall. Their movement freezes after short illumination as a result of irradiation damage. Energy dispersive X-ray spectrometry confirms the presence of iron, chromium, ruthenium, vanadium and tungsten

    Plasma levels of immunosuppressive mediators during cardiopulmonary bypass

    Get PDF
    The aim of this study was to evaluate plasma levels of two mediators with immunosuppressive properties, complement fraction C3a (C3a) and transforming growth factor-β1 (TGF-β1), during extracorporeal circulation. The proliferation index after phytohaemagglutinin (PHA) stimulation of isolated peripheral blood mononuclear cells was also investigated. Sixteen patients undergoing hypothermic (n = 8, group 1) and normothermic (n = 8, group 2) cardiopulmormry bypass (CPB) were enrolled in this study. As a control, we evaluated four patients undergoing thoracovascular operations without CPB. Blood samples were collected before CPB but after anaesthesia, every 30 min during CPB, at the end of CPB and 10 min after protamine administration. Both C3a and TGF-β1 increased significantly during CPB and after protamine administration in the hypothermic as well as the normothermic group. In the latter case the increase of C3a and TGF-β1, although more prominent, was not significantl higher than in the former group. Conversely, the proliferation, index of peripheral mononuclear cells had already decreased 30 min after CPB was started and remained depressed throughout the CPB time. These results suggest a possible role of C3a and TGF-β1 in the immunological changes occurring during extracorporeal circulation

    Impact of a nursing information system in clinical practice: a longitudinal study project

    Get PDF
    Background: The implementation of adequate clinical information systems helps to deal with the immense flow of health data to ensure the continuity of care and access to a safe and high-quality healthcare system. Currently there is an increasing awareness of the importance of evaluating and measuring the impact of such systems in clinical practice. Implementations often fail, due to inadequate interaction between technology and human elements. Methods: This article describes a research project aimed at evaluating the impact of a clinical nursing information system (CNIS), called Professional Assessment Instrument (PAI), in clinical practice. The study will evaluate PAI Quality, Nurses Satisfaction, PAI Use, Nurses and Environment Characteristics, Net Benefits and Nurses’ Experiences related to the PAI use. A theoretical model developed for this research will guide the study. A quali-quantitative longitudinal design will be performed involving two hospitals over a 9-month period. To measure different dimensions that affect the success/failure of CNIS we will use different tools/ methods of data collection (questionnaires, psychometric tools, surveys and focus groups). Expected Results: This study will evaluate the impact of a CNIS in hospitals providing an overview of the factors which can help and hinder the implementation of an information system. Conclusions: The results of the study will support interventions to improve and implement clinical information systems designed to computerize nursing data, with positive effects on public health and research in general, providing further evidence for health policy
    corecore