21 research outputs found

    Transformation Acoustics in Generic Elastic Media

    Full text link
    In this work a transformation acoustics scheme for generic elastic media is developed. Our approach starts form the decomposition of the elasticity tensor in terms of its eigentensors, an idea previously used by Norris. While Norris' transformation acoustics is restricted to the special class of so-called pentamode materials, we show that a similar scheme can be defined for the most general elasticity tensor. As in case of Norris' model (and in sharp contrast to transformation optics), the compatibility equations of the transformation medium are not purely algebraic and it is not guaranteed that solutions to these equations exist for any choice of material parameters and coordinate transformation. Nonetheless, it is shown that our scheme yields new cloaking solutions for certain classes of materials. In particular, we present the first application of a transformation based device for a non-scalar wave equation outside of the field of electromagnetics.Comment: 14 pages, LaTe

    Negative index of refraction, perfect lenses and transformation optics -- some words of caution

    Full text link
    In this paper we show that a negative index of refraction is not a direct implication of transformation optics with orientation-reversing diffeomorphisms. Rather a negative index appears due to a specific choice of sign freedom. Furthermore, we point out that the transformation designed lens, which relies on the concept of spacetime folding, does not amplify evanescent modes, in contrast to the Pendry-Veselago lens. Instead, evanescent modes at the image point are produced by a duplicated source and thus no imaging of the near field (perfect lensing) takes place.Comment: 13 pages, 3 figures, LaTe

    Black Hole Thermodynamics and Hamilton-Jacobi Counterterm

    Full text link
    We review the construction of the universal Hamilton-Jacobi counterterm for dilaton gravity in two dimensions, derive the corresponding result in the Cartan formulation and elaborate further upon black hole thermodynamics and semi-classical corrections. Applications include spherically symmetric black holes in arbitrary dimensions with Minkowski- or AdS-asymptotics, the BTZ black hole and black holes in two-dimensional string theory.Comment: 9 pages, proceedings contribution to QFEXT07 submitted to IJMPA, v2: added Re

    Decomposable medium conditions in four-dimensional representation

    Full text link
    The well-known TE/TM decomposition of time-harmonic electromagnetic fields in uniaxial anisotropic media is generalized in terms of four-dimensional differential-form formalism by requiring that the field two-form satisfies an orthogonality condition with respect to two given bivectors. Conditions for the electromagnetic medium in which such a decomposition is possible are derived and found to define three subclasses of media. It is shown that the previously known classes of generalized Q-media and generalized P-media are particular cases of the proposed decomposable media (DCM) associated to a quadratic equation for the medium dyadic. As a novel solution, another class of special decomposable media (SDCM) is defined by a linear dyadic equation. The paper further discusses the properties of medium dyadics and plane-wave propagation in all the identified cases of DCM and SDCM

    Generalized transformation optics from triple spacetime metamaterials

    Full text link
    In this paper various extensions of the design strategy of transformation media are proposed. We show that it is possible to assign different transformed spaces to the field strength tensor (electric field and magnetic induction) and to the excitation tensor (displacement field and magnetic field), resp. In this way, several limitations of standard transformation media can be overcome. In particular it is possible to provide a geometric interpretation of non-reciprocal as well as indefinite materials. We show that these transformations can be complemented by a continuous version of electric-magnetic duality and comment on the relation to the complementary approach of field-transforming metamaterials.Comment: 11 pages, 3 figures, v2: typos, new figures, REVTeX, v3: typos, new example added, final versio

    Graded Poisson-Sigma Models and Dilaton-Deformed 2D Supergravity Algebra

    Get PDF
    Fermionic extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. In addition, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to algebras which can be interpreted as supergravities in the usual sense (Neuveu-Schwarz or Ramond algebras resp.), deformed by the presence of the dilaton field. With very straightforward and natural assumptions on them --like demanding rigid supersymmetry in a certain flat limit, or linking the anti-commutator of certain fermionic charges to the Hamiltonian constraint-- in the ``genuine'' supergravity obtained in this way the ambiguities disappear, as well as the obstructions referred to above. Thus all especially interesting bosonic models (spherically reduced gravity, the Jackiw-Teitelboim model etc.)\ under these conditions possess a unique fermionic extension and are free from new singularities. The superspace supergravity model of Howe is found as a special case of this supergravity action. For this class of models the relation between bosonic potential and prepotential does not introduce obstructions as well.Comment: 22 pages, LaTeX, JHEP class. v3: Final version, to appear in JHE
    corecore