3 research outputs found

    Experimental and Theoretical Analysis for Isolation Performance of New Combined Isolation Devices under Blast Loading

    No full text
    The strong shock and vibration effect caused by explosion may pose a serious threat to the surrounding environment and the safety of personnel and equipment. This also makes the problem of vibration isolation and absorption of the structures subjected to blast loading increasingly prominent. In this paper, three kinds of new combined isolation devices with high resistance are designed and manufactured, and the characteristic parameters such as natural vibration period, frequency, and damping ratio are obtained through drop hammer impact test. Based on the Duhamel integral principle, analytical solutions of dynamic response of the combined isolation devices under rectangular pulse blast loading are derived, and the calculation expressions of transmissibility and vibration isolation rate are proposed. Combined with the test results, the isolation performance of three kinds of combined isolation devices under blast loading is obtained by using the theoretical calculation formula, and the influencing factors of isolation performance are further analyzed parametrically. The research results provide a reference for the application of combined isolation devices in isolation and shock absorption of structures under blast loading

    Numerical Simulation Study on Factors Influencing Anti-Explosion Performance of Steel Structure Protective Doors under Chemical Explosion Conditions

    No full text
    To study the mechanical deformation characteristics and anti-explosion mechanisms of steel-structure protective doors under chemical explosion shock wave loads, numerical simulations of loads and door damage were carried out using the AUTODYN and LS-DYNA software based on model tuning with actual field test results. The finite element simulation results were compared with the test results to verify the accuracy of the simulation model and material parameters. A parametric analysis was carried out on the influencing factors of the anti-explosion performance of the beam–plate steel structure protective door under typical shock wave loads. The impact of the material strength and geometry of each part of the protective door on its anti-explosion performance was studied. The results showed that the protective door sustained a uniform shock wave load and that increasing the steel strength of the skeleton could significantly reduce the maximum response displacement of the protective door. The steel strength increase of the inner and outer panels had little or a negligible effect on the anti-explosion performance of the protective door. The geometric dimensions of different parts of the protective door had different effects on the anti-explosion performance. Increasing the skeleton height had the most significant effect on the anti-explosion performance. The skeleton’s I-steel flange thickness and the inner and outer panel thicknesses had less significant effects
    corecore