19 research outputs found
Biochar Improves the Properties of Poultry Manure Compost as Growing Media for Rosemary Production
[EN] Compost represents a sustainable alternative for peat (P) replacement in soilless plant
cultivation, but its use can be limited by several inadequate physical and physicochemical properties.
Biochar can alleviate some of the limitations of compost for its use as growth media by improving
the physical properties, decreasing salinity and making the phytotoxic compounds unavailable for
plants. We studied the physical and physicochemical properties of holm oak biochar (B), poultry
manure compost (PMC), poultry manure composted with biochar (PMBC), a commercial peat (P)
and multiple combinations of these materials as growth media, and their effect on the rooting and
growth of rosemary. PMBC and PMC showed similar physical and physicochemical properties as
growing media, and they both were phytotoxic when used in a rate above 50% (by volume) in the
growing medium. However, when used at proportion of 25%, PMBC was less phytotoxic than PMC
and enhanced the percentage of rosemary cutting rooting. The incorporation of B in the growing
medium instead of P (either at 50% or 75% in volume) increased the stability of the growing media
and the percentage of rooted cuttings, but it did not affect plant growth significantly. Our results
demonstrate the potential of substituting peat by a combination of poultry manure compost and
biochar for the formulation of growth media.This research was funded by SPANISH MINISTRY OF ECONOMY AND COMPETITIVENESS, grant numbers AGL2012-40143-C02-01 and RTI2018-099417-B-I00, co-funded with EU FEDER fundsFornes Sebastiá, F.; Liu-Xu, L.; Lidón, A.; Sanchez-Garcia, M.; Luz Cayuela, M.; Sanchez-Monedero, MA.; Belda Navarro, RM. (2020). Biochar Improves the Properties of Poultry Manure Compost as Growing Media for Rosemary Production. Agronomy. 10(2):1-16. https://doi.org/10.3390/agronomy10020261S116102KERN, J., TAMMEORG, P., SHANSKIY, M., SAKRABANI, R., KNICKER, H., KAMMANN, C., … GLASER, B. (2017). SYNERGISTIC USE OF PEAT AND CHARRED MATERIAL IN GROWING MEDIA – AN OPTION TO REDUCE THE PRESSURE ON PEATLANDS? Journal of Environmental Engineering and Landscape Management, 25(2), 160-174. doi:10.3846/16486897.2017.1284665Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., … Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22(12), 4134-4149. doi:10.1111/gcb.13303Raviv, M. (2005). Production of High-quality Composts for Horticultural Purposes: A Mini-review. HortTechnology, 15(1), 52-57. doi:10.21273/horttech.15.1.0052GARCIADELAFUENTE, R., CARRION, C., BOTELLA, S., FORNES, F., NOGUERA, V., & ABAD, M. (2007). Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology, 98(18), 3561-3569. doi:10.1016/j.biortech.2006.11.008Alburquerque, J. A., Gonzálvez, J., García, D., & Cegarra, J. (2006). Measuring detoxification and maturity in compost made from «alperujo», the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere, 64(3), 470-477. doi:10.1016/j.chemosphere.2005.10.055Wang, P., Changa, C. M., Watson, M. E., Dick, W. A., Chen, Y., & Hoitink, H. A. J. (2004). Maturity indices for composted dairy and pig manures. Soil Biology and Biochemistry, 36(5), 767-776. doi:10.1016/j.soilbio.2003.12.012Sáez, J. A., Belda, R. M., Bernal, M. P., & Fornes, F. (2016). Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Industrial Crops and Products, 94, 97-106. doi:10.1016/j.indcrop.2016.08.035Kelleher, B. ., Leahy, J. ., Henihan, A. ., O’Dwyer, T. ., Sutton, D., & Leahy, M. . (2002). Advances in poultry litter disposal technology – a review. Bioresource Technology, 83(1), 27-36. doi:10.1016/s0960-8524(01)00133-xAtiyeh, R. M., Subler, S., Edwards, C. A., Bachman, G., Metzger, J. D., & Shuster, W. (2000). Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5), 579-590. doi:10.1078/s0031-4056(04)70073-6Steiner, C., & Harttung, T. (2014). Biochar as a growing media additive and peat substitute. Solid Earth, 5(2), 995-999. doi:10.5194/se-5-995-2014Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(1). doi:10.1038/ncomms1053Fornes, F., & Belda, R. M. (2018). Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Scientia Agricola, 75(4), 304-312. doi:10.1590/1678-992x-2017-0062Tian, Y., Sun, X., Li, S., Wang, H., Wang, L., Cao, J., & Zhang, L. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15-18. doi:10.1016/j.scienta.2012.05.018Fornes, F., Belda, R. M., Fernández de Córdova, P., & Cebolla-Cornejo, J. (2017). Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. Journal of the Science of Food and Agriculture, 97(11), 3675-3684. doi:10.1002/jsfa.8227Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M., & Pozzi, A. (2015). Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 66(7), 747. doi:10.1071/cp14247Belda, R. M., Lidón, A., & Fornes, F. (2016). Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products, 94, 132-142. doi:10.1016/j.indcrop.2016.08.024Fornes, F., & Belda, R. M. (2019). Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests, 50(6), 1063-1086. doi:10.1007/s11056-019-09715-yHuang, L., Niu, G., Feagley, S. E., & Gu, M. (2019). Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Industrial Crops and Products, 129, 549-560. doi:10.1016/j.indcrop.2018.12.044Alvarez, J. M., Pasian, C., Lal, R., Lapez, R., & Ferna¡ndez, M. (2017). Vermicompost and biochar as substitutes of growing media in ornamental-plant production. Journal of Applied Horticulture, 19(03), 205-214. doi:10.37855/jah.2017.v19i03.37Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. Journal of Environmental Quality, 39(4), 1236-1242. doi:10.2134/jeq2009.0337Wang, C., Lu, H., Dong, D., Deng, H., Strong, P. J., Wang, H., & Wu, W. (2013). Insight into the Effects of Biochar on Manure Composting: Evidence Supporting the Relationship between N2O Emission and Denitrifying Community. Environmental Science & Technology, 47(13), 7341-7349. doi:10.1021/es305293hWang, Y., Villamil, M. B., Davidson, P. C., & Akdeniz, N. (2019). A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of The Total Environment, 685, 741-752. doi:10.1016/j.scitotenv.2019.06.244Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & Cayuela, M. L. (2015). Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology, 192, 272-279. doi:10.1016/j.biortech.2015.05.003Maroušek, J., Hašková, S., Zeman, R., Žák, J., Vaníčková, R., Maroušková, A., … Myšková, K. (2015). Polemics on Ethical Aspects in the Compost Business. Science and Engineering Ethics, 22(2), 581-590. doi:10.1007/s11948-015-9664-yAbad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, A., & Puchades, R. (2005). Physical Properties of Various Coconut Coir Dusts Compared to Peat. HortScience, 40(7), 2138-2144. doi:10.21273/hortsci.40.7.2138Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442. doi:10.1016/j.geoderma.2010.05.012Jaiswal, A. K., Elad, Y., Paudel, I., Graber, E. R., Cytryn, E., & Frenkel, O. (2017). Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Scientific Reports, 7(1). doi:10.1038/srep44382Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of Systemic Resistance in Plants by Biochar, a Soil-Applied Carbon Sequestering Agent. Phytopathology®, 100(9), 913-921. doi:10.1094/phyto-100-9-0913Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1-2), 481-496. doi:10.1007/s11104-010-0544-6Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48. doi:10.1016/j.jclepro.2014.08.057Fornes, F., Belda, R. M., Carrión, C., Noguera, V., García-Agustín, P., & Abad, M. (2007). Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113(1), 52-59. doi:10.1016/j.scienta.2007.01.008Moran, R. (1982). Formulae for Determination of Chlorophyllous Pigments Extracted with N,N-Dimethylformamide. Plant Physiology, 69(6), 1376-1381. doi:10.1104/pp.69.6.1376Mendoza-Hernández, D., Fornes, F., & Belda, R. M. (2014). Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Scientia Horticulturae, 178, 192-202. doi:10.1016/j.scienta.2014.08.024Fornes, F., Mendoza-Hernandez, D., & Belda, R. M. (2013). Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish Journal of Agricultural Research, 11(2), 518. doi:10.5424/sjar/2013112-3304Esteban, R., Ariz, I., Cruz, C., & Moran, J. F. (2016). Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 248, 92-101. doi:10.1016/j.plantsci.2016.04.008Domínguez-Valdivia, M. D., Aparicio-Tejo, P. M., Lamsfus, C., Cruz, C., Martins-Loução, M. A., & Moran, J. F. (2008). Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and -sensitive plants. Physiologia Plantarum, 132(3), 359-369. doi:10.1111/j.1399-3054.2007.01022.xBritto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 159(6), 567-584. doi:10.1078/0176-1617-0774Fornes, F., Carrión, C., García-de-la-Fuente, R., Puchades, R., & Abad, M. (2010). Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. Journal of Environmental Management, 91(8), 1747-1755. doi:10.1016/j.jenvman.2010.03.01
Soil C Storage Potential of Exogenous Organic Matter at Regional Level (Italy) Under Climate Change Simulated by RothC Model Modified for Amended Soils
Soil amendment with exogenous organic matter (EOM) represents an effective option for sustainable management of organic residues and enhancement of soil organic C (SOC) content. Optimization of soil amendment is hampered by the high variability in EOM quality and pedoclimatic conditions. A possible solution to this problem could be represented by spatially explicit soil C modeling. The aim of this study was the evaluation at regional level of the long term C storage potential of EOM added to the soil under climate change by using a modified version of the RothC specifically developed for C simulation in amended soil. To achieve this goal a spatially explicit version of the modified RothC model was deployed to assess at a national scale the potential for C storage of agricultural soils amended with different EOMs. Long term model simulations of continuous amendment (100 years) indicated that EOMs greatly differ for their soil C sequestration potential (range 0.110–0.385 t C ha−1 y−1), mainly depending to their degree of stabilization. Spatial explicit modeling of amended soil, taking into account the different combinations of EOMs and application sites, indicated a high variability in the potential of SOC accumulation at the national level (range: 0.06–0.62 t C ha−1 y−1). EOM quality showed a larger impact on long term SOC accumulation than variability in pedoclimatic conditions. Model simulations predicted that the contribution of soil amendment in tackling greenhouse gas (GHG) emissions is limited: soil C sequestration potential of compost applied to all Italian agricultural land corresponded to 5.3% of the total annual GHG emissions in Italy. Large scale modeling enables areas with the largest potential for EOM accumulation to be identified, therefore suggesting ways for optimizing resources. The spatially explicit version of the modified RothC model improves the predictive power of SOC modeling at regional scale in amended soils, because it takes into account, besides variability in pedoclimatic conditions, the large differences in EOMs quality
Recommended from our members
Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs
Agriculture and land use change has significantly increased atmospheric emissions of the non-CO2 green-house gases (GHG) nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategies are required that reduce the GHG footprint per unit of yield. Here we review the potential of biochar to reduce N2O and CH4 emissions from agricultural practices including potential mechanisms behind observed effects. Furthermore, we investigate alternative uses of biochar in agricultural land management that may significantly reduce the GHG-emissions-per-unit-of-product footprint, such as (i) pyrolysis of manures as hygienic alternative to direct soil application, (ii) using biochar as fertilizer carrier matrix for underfoot fertilization, biochar use (iii) as composting additive or (iv) as feed additive in animal husbandry or for manure treatment. We conclude that the largest future research needs lay in conducting life-cycle GHG assessments when using biochar as an on-farm management tool for nutrient-rich biomass waste streams. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group]
Trade‐offs and synergies of soil carbon sequestration: Addressing knowledge gaps related to soil management strategies
Soil organic carbon (SOC) sequestration in agricultural soils is an important tool for climate change mitigation within the EU soil strategy for 2030 and can be achieved via the adoption of soil management strategies (SMS). These strategies may induce synergistic effects by simultaneously reducing greenhouse gas (GHG) emissions and/or nitrogen (N) leaching. In contrast, other SMS may stimulate emissions of GHG such as nitrous oxide (N2O) or methane (CH4), offsetting the climate change mitigation gained via SOC sequestration. Despite the importance of understanding trade-offs and synergies for selecting sustainable SMS for European agriculture, knowledge on these effects remains limited. This review synthesizes existing knowledge, identifies knowledge gaps and provides research recommendations on trade-offs and synergies between SOC sequestration or SOC accrual, non-CO2 GHG emissions and N leaching related to selected SMS. We investigated 87 peer-reviewed articles that address SMS and categorized them under tillage management, cropping systems, water management and fertilization and organic matter (OM) inputs. SMS, such as conservation tillage, adapted crop rotations, adapted water management, OM inputs by cover crops (CC), organic amendments (OA) and biochar, contribute to increase SOC stocks and reduce N leaching. Adoption of leguminous CC or specific cropping systems and adapted water management tend to create trade-offs by stimulating N2O emissions, while specific cropping systems or application of biochar can mitigate N2O emissions. The effect of crop residues on N2O emissions depends strongly on their C/N ratio. Organic agriculture and agroforestry clearly mitigate CH4 emissions but the impact of other SMS requires additional study. More experimental research is needed to study the impact of both the pedoclimatic conditions and the long-term dynamics of trade-offs and synergies. Researchers should simultaneously assess the impact of (multiple) agricultural SMS on SOC stocks, GHG emissions and N leaching. This review provides guidance to policymakers as well as a framework to design field experiments and model simulations, which can address knowledge gaps and non-intentional effects of applying agricultural SMS meant to increase SOC sequestration
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
¿Qué tipos de biochar favorecen la reducción del N2O a N2 en suelos agrícolas?
De entre las fuentes antropogénicas, los suelos agrícolas son los mayores emisores de óxido nitroso (N2O) a la atmósfera. Se ha demostrado que el biochar, un producto con alto contenido en carbono que se obtiene mediante la pirólisis de residuos orgánicos, reduce la emisión de GEIs, y en especial de N2O, cuando es añadido al suelo. El mecanismo por el cual el biochar tiene este efecto permanece sin determinar, aunque son numerosas las propuestas tanto las de carácter abiótico como biótico. Entre las más apoyadas, se encuentran: la capacidad del biochar para alterar la actividad microbiana de los organismos que intervienen en el ciclo del N del suelo; las modificaciones que el biochar provoca sobre diversas funciones y propiedades del suelo al reaccionar con las formas de nitrógeno que en el coexisten (nitrato, nitrito o N2O); o su acción como intermediario en las reacciones redox del suelo, como donador o aceptor de electrones. Recientes estudios apuntan este último mecanismo como una de las que tendría mayor relevancia donde, en concreto, el biochar intervendría de manera activa en el último paso de la desnitrificación, en el que el N2O es reducido a nitrógeno (N2). Sin embargo, aunque algunos estudios han demostrado esta teoría, no se han determinado aún cuales son las características del biochar que ejercen una mayor influencia y que, por tanto, serían más efectivos. Una de las mayores dificultades que se plantean es la variabilidad en cuanto a las propiedades físicas y químicas que tienen los biochars. Sin embargo, el conjunto de sus características (i.e. H:Corg, porosidad, composición lignocelulósica) resultan claves para la acción final que el biochar genere, pues determinarán su capacidad para intercambiar electrones con los microorganismos reductores de N2O y favorecer así su acción.
Con el objetivo de estudiar cómo el proceso de reducción N2O en el suelo se ve alterado por la presencia de diferentes bichars previamente caracterizados, se han se están realizando ensayos de incubación bajo condiciones controladas. En recipientes cerrados, a mezclas con diferentes grados de humedad de suelo y biochar (2%) se aplica una cantidad conocida de N2O cuya evolución se monitoriza con el tiempo. Inicialmente, el biochar ensayado se ha sintetizado a 400 °C partir de residuos de poda de olivo, al cual seguirán otros producidos a partir de diferentes materiales de partida. De esta manera, se será capaz de vincular las propiedades de cada biochar con su capacidad para favorecer la transformación de N2O en N2.
Se presentarán los resultados de la evolución de la concentración de N2O en el ensayo de incubación descrito y las propiedades de los biochar ensayados; todo ello junto con un análisis que relacione ambos parámetros.Peer reviewe
USE OF ORGANIC RESIDUES FOR THE RECOVERY OF SOIL AND ENVIRONMENTAL SUSTAINABILITY
The aim of this work was to investigate the effects of different organic residues on soil fertility and climate change, through the evaluation of soil organic matter mineralisation, greenhouse gas emission, nutrient availability and soil microbial biomass content and activity. A degraded agricultural soil was amended with three different organic residues (pig slurry digestate, rapeseed meal, and compost) at three different doses (0.1, 0.25 and 0.5% w/w) and incubated for 30 days at 20 ºC. During incubation, soil CO2 and N2O emissions, K2SO4 extractable organic C, N, NH4+, NO3- and P, soil microbial biomass and some enzymatic activities were determined. Results obtained showed that rapeseed meal and pig slurry are best suited to improve soil chemical and biological fertility, while compost is more appropriate for the enhancement of soil organic matter content and to promote soil C sequestration
UTILIZZO DI RESIDUI DA PROCESSI BIOENERGETICI COME AMMENDANTI: IMPLICAZIONI SULLA FERTILITÀ DEL SUOLO ED IL SEQUESTRO DEL CARBONIO
The increasing use of renewable energy sources as substitutes to fossil fuels has provoked an increase in the production of bioenergy residues. These residues could be effectively used for the recovery and conservation of soil fertility. However, the effect of the organic residues on the soil ecosystem is different depending on their physico-chemical characteristics and, particularly, the knowledge of the impact of bioenergy residues on soil quality is still limited. The aim of this work is to study the effects of different bioenergy residues on C and N mineralization and soil microbial content and activity. A degraded soil (clay 49.7%, pH 7, OC 0.37%) from Southern Spain was amended (0.5% w/w) with four different bioenergy residues (anaerobic digestate, rapeseed meal from biodiesel production, bioethanol residue and biochar) and three other organic residues commonly used as organic amendments (wastewater sludge and two composts). The amended soil was then incubated for 30 days at 20 ºC. During incubation soil CO2 evolution was measured every 4 hours by means of an automatic chromatographic system. After 2, 7 and 30 days of incubation the following parameters were also analysed: K2SO4-extractable C, N, NO3 -, NH4 + and P, microbial biomass C and some enzymatic activities involved in the cycle of the main nutritive elements (β-glucosidase, arylsulfatase, esterase, alkaline and acid phosphatase and leucine aminopeptidase). Soil addition of the different residues led to a general increase in C and N mineralization, in the availability of nutrients and in the microbial content and activity, but with remarkable different values and dynamics. The only exception was represented by biochar that did not cause any significant variations of the measured parameters with respect to the control. The obtained results demonstrate that bioenergy residues may represent an effective alternative to usual amendments for the recovery and conservation of soil quality. The different physico-chemical characteristics of the residues suggest different uses. Rapeseed meal, bioethanol residue and anaerobic digestate are more suited to improve soil biological fertility, while biochar is more appropriated for the enhancement of soil organic matter content and to promote soil C sequestration.L’augmentation de l’utilisation d’énergies renouvelables comme substituts des combustibles fossiles a provoqué une nette augmentation de la production de résidus bioénergétiques. De tels déchets peuvent être utilisés pour le rétablissement et la conservation de la fertilité des sols. Pourtant, l’effet des résidus organiques sur l’écosystème du sol est différent selon ses caractéristiques physico-chimiques. En particulier, les connaissances concernant l’impact des résidus bioénergétiques sur la qualité du sol sont encore limitées. Nous avons étudié les effets de résidus de différents processus bioénergétiques sur la minéralisation de C et N ainsi que sur le contenu et l’activité des microorganismes. Un sol dégradé (argile 49.7 %, pH 7, CO 0.37 %) provenant de l’Espagne méridionale a été amendé (0.5 % m/m) avec quatre différents résidus bioénergétiques (déchets de la digestion anaérobique, farine de colza de la production de biodiesel, résidus de la production de bioéthanol et de charbon de bois) et trois résidus organiques habituellement utilisés comme amendements (boue de dépurateur et deux types de compost). Le sol, après amendement, a été incubé 30 jours à 20 ºC. Au cours de l’incubation, l’évolution de CO2 a été mesurée à intervalles de quatre heures par chromatographie. Après 2, 7 et 30 jours les paramètres suivant ont été analysés: C, N, NO3 -, NH4 + et P extractible par K2SO4, C de la biomasse microbienne et certaines activités enzymatiques impliquées dans le cycle des principaux éléments nutritifs (β-glucosidase, arylsulfatase, estérase, phosphatase alcaline et acide ainsi que leucylaminopeptidase). L’addition de divers résidus au sol a provoqué en générale une augmentation de la minéralisation de C et N, de la disponibilité des nutriments et du contenu et activité des microorganismes ; tout ceci avec de significatives différences aussi bien en terme de quantité que de dynamique. L’addition de résidus de la production de charbon de bois n’a pas provoqué de variation significative des paramètres mesurés par rapport au témoin. Les résultats obtenus démontrent que les résidus bioénergétiques peuvent représenter une alternative efficace aux amendements habituels pour le rétablissement et la conservation de la qualité du sol. Les différentes caractéristiques physico-chimiques des résidus suggèrent diverses modalités d’utilisation. La farine de colza, le résidu de la production de bioéthanol et les produits de la digestion anaérobique sont plus indiqués pour améliorer la fertilité biologique du sol alors que le charbon de bois est plus approprié pour augmenter le contenu en matière organique et favoriser la capture de C.L’aumento dell’utilizzo di energie rinnovabili come sostituti dei combustibili fossili ha provocato un consistente incremento nella produzione di residui bioenergetici. Tali residui possono essere convenientemente utilizzati per il recupero ed il mantenimento della fertilità dei suoli. Tuttavia, l’effetto dei residui organici sull’ecosistema del suolo è diverso a seconda delle sue caratteristiche fisico-chimiche. In particolare le conoscenze sull’impatto dei residui dei processi bioenergetici sulla qualità del suolo sono ancora limitate. Lo scopo di questo lavoro era pertanto lo studio degli effetti di residui da diversi processi bioenergetici sulla mineralizzazione di C e N ed il contenuto ed attività dei microorganismi del suolo. Un suolo degradato (argilla 49.7%, pH 7, CO 0.37%) proveniente dalla Spagna meridionale è stato ammendato (0.5% p/p) con quattro diversi residui da processi bionergetici (residuo della digestione anaerobica, farina di colza dalla produzione di biodiesel, residuo della produzione di bioetanolo e biocarbone) e tre residui organici comunemente usati come ammendanti (fango di depurazione e due tipi di compost). Il suolo ammendato è stato poi incubato per 30 giorni a 20 ºC. Durante l’incubazione è stata misurata l’evoluzione della CO2 ogni 4 ore mediante un sistema cromatografico automatizzato. Dopo 2, 7 e 30 giorni di incubazione sono stati analizzati i seguenti parametri: C, N, NO3 -, NH4 + e P estraibili con K2SO4, C della biomassa microbica e alcune attività enzimatiche implicate nel ciclo dei principali elementi nutritivi (β-glucosidasi, arilsulfatasi, esterasi, fosfatasi acida e alcalina e leucina aminopeptidasi). L’aggiunta dei diversi residui al suolo ha provocato in generale un aumento nella mineralizzazione di C e N, nella disponibilità di nutrienti e nel contenuto ed attività dei microorganismi, ma con significative differenze nella quantità e dinamica. L’unica eccezione è stata costituita dal biocarbone che non ha causato variazioni significative dei parametri misurati rispetto al ontrollo. I risultati ottenuti dimostrano che i residui bionergetici possono rappresentare un’alternativa efficace ai comuni ammendanti per il recupero ed il mantenimento della qualità del suolo. Tuttavia le diverse caratteristiche chimico-fisiche dei residui suggeriscono differenti modalità di utilizzo. La farina di colza, il residuo della produzione di bioetanolo ed il digestato sono più indicati per migliorare la fertilità biologica del suolo, mentre il biocarbone è più appropriato per aumentare il contenuto di materia organica del suolo e favorire il sequestro del C
Efecto del biochar en la producción y oxidación de CH4 en suelos agrícolas
El CH4 es el segundo gas de efecto invernadero (GEIs) más importante, cuyo potencial de calentamiento es 34 veces superior al del CO2. La contribución de la agricultura a la emisión de GEIs de procedencia antropogénica alcanza el 12%, siendo el CH4 el responsable de la mitad de estas emisiones; valor que está en aumento debido al crecimiento de la población mundial.
El biochar es el producto resultante de someter residuos de origen orgánico a un proceso de pirolisis a altas temperaturas en ausencia de oxígeno. Un alto porcentaje del C biodegradable de la biomasa original se convierte en una forma más estable y recalcitrante, lo que favorece el secuestro de C en el suelo (disminuye la liberación de CO2). Además, numerosos estudios han demostrado la reducción que produce en la emisión de otros GEIs, como son el CH4 y el N2O. Estos efectos se producirían debido a la influencia que el biochar tiene, entre otros, en los ciclos biogeoquímicos del C y N en el suelo, su comunidad microbiana, pH o aireación.
Numerosas investigaciones han estudiado el efecto de la aplicación de biochar en las emisiones de CH4 de suelos agrícolas. Se han obtenido resultados dispares que son una muestra de la cantidad de variables que intervienen, tales como, el material de partida, la temperatura del proceso de pirólisis, el porcentaje de biochar que se añade, las características del suelo objeto de estudio, el clima, las condiciones del experimento, etc. Se une como variable la compleja actividad del CH4 en el suelo, que puede ser producido u oxidado (organismos metanogénicos o metanótrofos) dependiendo de las condiciones ambientales (anóxicas u óxicas).
Sin embargo, se ha demostrado que el biochar es capaz de reducir de manera significativa las emisiones de CH4. Por un lado, hay evidencias del potencial del biochar en suelos encharcados de arrozal, en especial los de pH ácido, en los cuales se incrementaría la actividad de los organismos metanótrofos. Por otro lado, los biochars generados en procesos de pirólisis a altas temperaturas (>600 ⁰C) incrementan el efecto sumidero de CH4 del suelo en comparación con los que se producen a temperaturas menores de 600 ⁰C. Esto se debe a que contienen una menor cantidad de compuestos lábiles en su estructura que son, entre otros, sustrato para las comunidades microbiológicas. Por último, la cantidad de biochar aplicada también debe ser tenida en cuenta: si es añadido en altas concentraciones, retiene iones amonio que entran en competición con el CH4, pues es también absorbido y metabolizado por los organismos metanogénicos y metanótrofos.
A pesar del elevado número de estudios que analizan el impacto del biochar en suelos anóxicos, son pocos los experimentos que han evaluado su efecto en suelos agrícolas típicos de clima mediterráneo como el español: suelos básicos y con un régimen de riego escaso. Se presentan los resultados preliminares de un estudio pormenorizado del efecto redox del biochar en la producción y oxidación de CH4, tanto biótica como abiótica, bajo distintos regímenes de humedad.Peer reviewe
Linking biochars properties to their capacity to modify aerobic CH4 oxidation in an upland agricultural soil
Aerobic soils are the largest biotic sink for atmospheric methane (CH4). Although agricultural intensification is
known to adversely impact soil CH4 uptake, the application of organic amendments (e.g. composts, green residues) in agricultural soils has been found to stimulate the activity of CH4 oxidizers. However, little is known
about the influence of biochar (a carbonaceous by-product of biomass pyrolysis) on the soil CH4 sink function. This study analyzes, through a series of laboratory incubation assays, how ten well-characterized biochars with contrasting properties influence CH4 oxidation rate constants (k) in an aerobic high-pH agricultural soil. Through the use of 13C-CH4, we demonstrated that both CH4 soil oxidation and CH4 assimilation were responsible for the decrease in CH4 concentration. A principal component regression (PCR) of the results suggested that the physico chemical properties of biochars were directly linked to their ability to enhance or inhibit the oxidation of CH4. Biochars from wood feedstocks and pyrolysed at 600 °C, characterized by a high pore area, led to the highest CH4 oxidation rates whereas biochars with high ash concentrations and electrical conductivity significantly diminished CH4 oxidation rates. Biochar redox properties were not found to be relevant for CH4 oxidation in soil.Peer reviewe