70 research outputs found

    The effect of weld residual stress on the free vibrational characteristics of cylindrical shell through the analytical method

    Get PDF
    The effect of weld residual stress on the free vibrational characteristics of cylindrical shell is investigated. Motion equations of cylindrical shell with weld residual stress are established based on Flügge theory, the interaction between weld residual stress and displacements is investigated. The analytical method is applied to calculate the vibrational mode. Weld residual stress can induce the variation of free vibrational characteristics. The amplitude mainly effects the variation magnitude of natural frequency and mode shape, and the distribution dose on the variation trend

    Research Advances on Organic Acid Degradation Process and Its Effects on Flavor of Fermented Alcohol Beverage

    Get PDF
    Moderate organic acids can make fermented alcohol beverage produce comfortable flavor and delicate taste, but during the fermentation process, the content of organic acids in fermented alcohol beverage is unstable. Too high can easily result in astringent and bitter taste and poor flavor, while too low can make the wine bland and tasteless. The type of organic acid also has important influence on the flavor of fermented alcohol beverage. Some methods of acid degradation are frequently used to accurately reduce the level of the primary organic acids in fermented alcohol beverage in order to improve its flavor and quality. This helps to better maintain the volatile flavor components in fermented alcohol beverage and control its flavor. In order to provide a theoretical foundation for improving the quality of fermented alcohol beverage and optimizing the brew processing, and promoting the large-scale sustainable development of fermented alcohol beverage industry, this paper describes the main acid degradation processes and their principles in fermented alcohol beverage, analyzes the benefits, drawbacks, and limitation of various processes, discusses the effects of acid degradation processes on the types of flavor substances in fermented alcohol beverage, and offers an outlook on future research for flavor regulation of fermented alcohol beverage

    Multilevel Bloom Filters for P2P Flows Identification Based on Cluster Analysis in Wireless Mesh Network

    Get PDF
    With the development of wireless mesh networks and distributed computing, lots of new P2P services have been deployed and enrich the Internet contents and applications. The rapid growth of P2P flows brings great pressure to the regular network operation. So the effective flow identification and management of P2P applications become increasingly urgent. In this paper, we build a multilevel bloom filters data structure to identify the P2P flows through researches on the locality characteristics of P2P flows. Different level structure stores different numbers of P2P flow rules. According to the characteristics values of the P2P flows, we adjust the parameters of the data structure of bloom filters. The searching steps of the scheme traverse from the first level to the last level. Compared with the traditional algorithms, our method solves the drawbacks of previous schemes. The simulation results demonstrate that our algorithm effectively enhances the performance of P2P flows identification. Then we deploy our flow identification algorithm in the traffic monitoring sensors which belong to the network traffic monitoring system at the export link in the campus network. In the real environment, the experiment results demonstrate that our algorithm has a fast speed and high accuracy to identify the P2P flows; therefore, it is suitable for actual deployment

    Urban Sprawl and Carbon Emissions Effects in City Areas Based on System Dynamics: A Case Study of Changsha City

    No full text
    Climate change is a global problem facing mankind, and achieving peak CO2 emissions and carbon neutrality is an important task for China to respond to global climate change. The quantitative evaluation of the trends of urban energy consumption and carbon emissions is a premise for achieving this goal. Therefore, from the perspective of urban expansion, this paper analyzes the complex relationship between the mutual interactions and feedback between urban population, land expansion, economic growth, energy structure and carbon emissions. STELLA simulation software is used to establish a system dynamics model of urban-level carbon emissions effects, and Changsha city is used for the case study. The simulated outputs of energy consumption and carbon emissions cover the period from 1949 to 2016. From 1949 to 2016, Changsha’s total energy consumption and carbon emissions per capita have continuously grown. The total carbon emissions increased from 0.66 Mt-CO2 to 60.95 Mt-CO2, while the per capita carbon emissions increased from 1.73 t-CO2/10,000 people to 18.3 Mt-CO2/10,000 people. The analysis of the structure of carbon emissions shows that the industrial sector accounted for the largest proportion of emissions, but it had gradually dropped from between 60% and 70% to about 40%. The carbon emissions of residential and commercial services accounted for less than 25%, and the proportion of transportation carbon emissions fluctuated greatly in 2013 and 2016. From the perspective of carbon emissions effects, carbon emissions per unit of GDP had a clear downward trend, from 186.11 t-CO2/CNY104 to 1.33 t-CO2/CNY104, and carbon emissions per unit of land showed two inflection points: one in 1961 and the other in 1996. The general trend showed an increase first, followed by a decrease, then a stabilization. There is a certain linear correlation between the compactness of urban shape and the overall trend of carbon emissions intensity, while the urban shape index has no linear correlation with the growth rate of carbon emissions. The carbon emissions assessment model constructed in this paper can be used by other municipalities, and the assessment results can provide guidance for future energy planning and decision making

    Acoustic Tunneling Study for Hexachiral Phononic Crystals Based on Dirac-Cone Dispersion Properties

    No full text
    Acoustic tunneling is an essential property for phononic crystals in a Dirac-cone state. By analyzing the linear dispersion relations for the accidental degeneracy of Bloch eigenstates, the influence of geometric parameters on opening the Dirac-cone state and the directional band gaps’ widths are investigated. For two-dimensional hexachiral phononic crystals, for example, the four-fold accidental degenerate Dirac point emerges at the center of the irreducible Brillouin zone (IBZ). The Dirac cone properties and the band structure inversion problem are discussed. Finally, to verify acoustic transmission properties near the double-Dirac-cone frequency region, the numerical calculation of the finite-width phononic crystal structure is carried out, and the acoustic transmission tunneling effect is proved. The results enrich and expand the manipulating method in the topological insulator problem for hexachiral phononic crystals
    • …
    corecore