28 research outputs found

    Combination of 2D Compressive Sensing Spectral Domain Optical Coherence Tomography and Interferometric Synthetic Aperture Microscopy

    No full text
    Combining the advantages of compressive sensing spectral domain optical coherence tomography (CS-SDOCT) and interferometric synthetic aperture microscopy (ISAM) in terms of data volume, imaging speed, and lateral resolution, we demonstrated how compressive sampling and ISAM can be simultaneously used to reconstruct an optical coherence tomography (OCT) image. Specifically, an OCT image is reconstructed from two-dimensional (2D) under-sampled spectral data dimension-by-dimension through a CS reconstruction algorithm. During the iterative process of CS algorithm, the deterioration of lateral resolution beyond the depth of focus (DOF) of a Gaussian beam is corrected. In the end, with less spectral data, we can obtain an OCT image with spatially invariant lateral resolution throughout the imaging depth. This method was verified in this paper by imaging the cells of an orange. A 0.7 × 1.5 mm image of an orange was reconstructed using only 50% × 50% spectral data, in which the dispersion of the structure was decreased by approximately 2.4 times at a depth of approximately 5.7 Rayleigh ranges above the focus. This result was consistent with that obtained with 100% data

    A Mesh-Based Monte Carlo Study for Investigating Structural and Functional Imaging of Brain Tissue Using Optical Coherence Tomography

    No full text
    Optical coherence tomography (OCT) can obtain high-resolution three-dimensional (3D) structural images of biological tissues, and spectroscopic OCT, which is one of the functional extensions of OCT, can also quantify chromophores of tissues. Due to its unique features, OCT has been increasingly used for brain imaging. To support the development of the simulation and analysis tools on which OCT-based brain imaging depends, a model of mesh-based Monte Carlo for OCT (MMC-OCT) is presented in this work to study OCT signals reflecting the structural and functional activities of brain tissue. In addition, an approach to improve the quantitative accuracy of chromophores in tissue is proposed and validated by MMC-OCT simulations. Specifically, the OCT-based brain structural imaging was first simulated to illustrate and validate the MMC-OCT strategy. We then focused on the influences of different wavelengths on the measurement of hemoglobin concentration C, oxygen saturation Y, and scattering coefficient S in brain tissue. Finally, it is proposed and verified here that the measurement accuracy of C, Y, and S can be improved by selecting appropriate wavelengths for calculation, which contributes to the experimental study of brain functional sensing

    Structural and Functional Sensing of Bio-Tissues Based on Compressive Sensing Spectral Domain Optical Coherence Tomography

    No full text
    In this paper, a full depth 2D CS-SDOCT approach is proposed, which combines two-dimensional (2D) compressive sensing spectral-domain optical coherence tomography (CS-SDOCT) and dispersion encoding (ED) technologies, and its applications in structural imaging and functional sensing of bio-tissues are studied. Specifically, by introducing a large dispersion mismatch between the reference arm and sample arm in SD-OCT system, the reconstruction of the under-sampled A-scan data and the removal of the conjugated images can be achieved simultaneously by only two iterations. The under-sampled B-scan data is then reconstructed using the classic CS reconstruction algorithm. For a 5 mm × 3.2 mm fish-eye image, the conjugated image was reduced by 31.4 dB using 50% × 50% sampled data (250 depth scans and 480 spectral sampling points per depth scan), and all A-scan data was reconstructed in only 1.2 s. In addition, we analyze the application performance of the CS-SDOCT in functional sensing of locally homogeneous tissue. Simulation and experimental results show that this method can correctly reconstruct the extinction coefficient spectrum under reasonable iteration times. When 8 iterations were used to reconstruct the A-scan data in the imaging experiment of fisheye, the extinction coefficient spectrum calculated using 50% × 50% data was approximately consistent with that obtained with 100% data

    X-ray-to-NIR multi-wavelength imaging through stochastic photoluminescence and compressed encoding

    No full text
    10.1016/j.matt.2024.02.014Matter71–1

    Spinal Glutamate Transporters Are Involved in the Development of Electroacupuncture Tolerance

    No full text
    Background: Electroacupuncture (EA) tolerance is a gradual decline in EA antinociception because of its repeated or prolonged use. This study aims to explore the role of spinal glutamate transporters (GTs) in EA tolerance (EAT). Methods: Rats were treated with EA once per day for eight consecutive days, and their L4-5 spinal cords were collected at days 0, 2, 4, 6 and 8. The levels of three spinal GTs and their mRNAs were detected with Western blot and pPCR, respectively. Then, riluzole, a positive GT regulator, was administered intrathecally in order to observe its effect on EA analgesia after repeated EA. Results: The expression levels of the spinal GTs increased at days 2 and 4, and gradually decreased as the times of EA increased. At day 8, no difference was observed in the spinal GTs between the sham treatment and the EA treatment. Intrathecal administration of riluzole dose-dependently attenuated the decreased EA analgesia. Conclusion: These results indicated the participation of the spinal GTs in EAT

    Spinal Glutamate Transporters Are Involved in the Development of Electroacupuncture Tolerance

    No full text
    Background: Electroacupuncture (EA) tolerance is a gradual decline in EA antinociception because of its repeated or prolonged use. This study aims to explore the role of spinal glutamate transporters (GTs) in EA tolerance (EAT). Methods: Rats were treated with EA once per day for eight consecutive days, and their L4-5 spinal cords were collected at days 0, 2, 4, 6 and 8. The levels of three spinal GTs and their mRNAs were detected with Western blot and pPCR, respectively. Then, riluzole, a positive GT regulator, was administered intrathecally in order to observe its effect on EA analgesia after repeated EA. Results: The expression levels of the spinal GTs increased at days 2 and 4, and gradually decreased as the times of EA increased. At day 8, no difference was observed in the spinal GTs between the sham treatment and the EA treatment. Intrathecal administration of riluzole dose-dependently attenuated the decreased EA analgesia. Conclusion: These results indicated the participation of the spinal GTs in EAT

    Periodic Nonlinear Error Analysis and Compensation of a Single-Excited Petal-Shaped Capacitive Encoder to Achieve High-Accuracy Measurement

    No full text
    The measurement results of a single-excitation petal-shaped capacitive encoder show strong periodic characteristics for nonlinear errors. This paper presents the analysis of periodic nonlinear errors in a single-excitation petal-shaped encoder in terms of three main aspects—sensitive structure processing error, circuit demodulation error, and installation error. Analytical and simulation results confirm that the first-, second-, and fourth-periodic electrical errors are caused by the misalignment of circuit parameters, non-uniform segmentation of the processing error, and cross interference of the electric field, respectively. Further experimental investigation reveals that the mechanical periodic error is caused by installation misalignment. Based on these analytical, simulation, and experimental results, the design of the capacitive encoder was optimized and a method based on harmonic components was applied to compensate the periodic nonlinear error of the encoder. Measurement results shows that the prototype which has 180 petal-shaped numbers can achieve a reduction of periodic nonlinear errors to less than 0.02° and its accuracy can be improved to 0.0006° after compensation over the full measurement range

    Handgrip strength is associated with risks of new-onset stroke and heart disease: results from 3 prospective cohorts

    No full text
    Abstract Background Stroke and heart disease are two major contributors to the global disease burden. We aimed to evaluate and compare the roles of different handgrip strength (HGS) expressions in predicting stroke and heart disease in three nationally representative cohorts. Methods This longitudinal study used data from the Health and Retirement Study (HRS), the Survey of Health, Ageing, and Retirement in Europe (SHARE), and the China Health and Retirement Longitudinal Study (CHARLS). The Cox proportional hazard model was applied to analyze the relationship between HGS and stroke and heart disease, and Harrell’s C index was used to assess the predictive abilities of different HGS expressions. Results A total of 4,407 participants suffered from stroke and 9,509 from heart disease during follow-up. Compared with the highest quartile, participants in the lowest quartile of dominant HGS, absolute HGS and relative HGS possessed a significantly higher risk of new-onset stroke in Europe, America, and China (all P < 0.05). After adding HGS to office-based risk factors, there were minimal or no differences in the increases of Harrell’s C indexes among three HGS expressions. In contrast, the modest association between HGS and heart disease was only seen in SHARE and HRS, but not in CHARLS. Conclusion Our findings support that HGS can be used as an independent predictor of stroke in middle-aged and older European, American and Chinese populations, and the predictive ability of HGS may not depend on how it is expressed. The relationship between HGS and heart disease calls for further validation

    Assessment of the Implementation Effect of a Gully Consolidation and Highland Protection (GCHP) Project Based on the GeoWEPP Model

    No full text
    The Gully Consolidation and Highland Protection (GCHP) project is an important governance measure for controlling source erosion and reducing soil erosion in the Loess Plateau, which has been explored and developed continuously in recent decades. However, there is no international precedent for research on the implementation effect of the GCHP project, and it is still relatively weak. In order to quantify the erosion of a small watershed under the construction of a gully head landfill, this study selected Yangjiagou (YJG) as the research area. The spatial analysis function of ArcGIS was used to process DEM and soil type data, the GeoWEPP model was used to simulate soil erosion, and the changes of runoff and sediment yield before and after gully head landfill were analyzed. The results showed that compared with the simulated original soil erosion amount, the annual runoff decreased by 13.13%, and the sediment yield decreased by 37.61% after gully head landfill, indicating that the GCHP project positively influenced soil erosion control. After the gully head landfill measures are taken, the flow path becomes shorter, so the flow scour capacity is weakened. Soil and water control is very effective in the short term, but if long-term maintenance is not carried out, the intensity of soil and water loss is likely to be aggravated. This study provides an effective verification method for the feasibility of a soil loss control scheme on the Loess Plateau and provides a reference for promoting ecological priority and efficient management in the Loess gully area. Ultimately, it will serve the ecological protection and high-quality development of the Yellow River Basin
    corecore