141 research outputs found

    IndiVec: An Exploration of Leveraging Large Language Models for Media Bias Detection with Fine-Grained Bias Indicators

    Full text link
    This study focuses on media bias detection, crucial in today's era of influential social media platforms shaping individual attitudes and opinions. In contrast to prior work that primarily relies on training specific models tailored to particular datasets, resulting in limited adaptability and subpar performance on out-of-domain data, we introduce a general bias detection framework, IndiVec, built upon large language models. IndiVec begins by constructing a fine-grained media bias database, leveraging the robust instruction-following capabilities of large language models and vector database techniques. When confronted with new input for bias detection, our framework automatically selects the most relevant indicator from the vector database and employs majority voting to determine the input's bias label. IndiVec excels compared to previous methods due to its adaptability (demonstrating consistent performance across diverse datasets from various sources) and explainability (providing explicit top-k indicators to interpret bias predictions). Experimental results on four political bias datasets highlight IndiVec's significant superiority over baselines. Furthermore, additional experiments and analysis provide profound insights into the framework's effectiveness

    Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2

    Full text link
    The interplay between electronic correlations and topological protection may offer a rich avenue for discovering emergent quantum phenomena in condensed matter. However, electronic correlations have so far been little investigated in Weyl semimetals (WSMs) by experiments. Here, we report a combined optical spectroscopy and theoretical calculation study on the strength of electronic correlations in a kagome magnet Co3Sn2S2 and the influence of electronic correlations on its WSM state expected within a single-particle picture. The electronic kinetic energy estimated from our optical data is about half of that obtained from single-particle ab initio calculations, which indicates intermediate-strength electronic correlations in this system. Furthermore, comparing the energy ratios between the interband-transition peaks at high energies in the experimental and single-particle-ab-initio-calculation derived optical conductivity spectra with the electronic bandwidth renormalization factors obtained by many-body calculations enables us to estimate the Coulomb-interaction strength (U ~ 4 eV) of electronic correlations in Co3Sn2S2. Our many-body calculations with U ~ 4 eV show that a WSM state, which is characterized by bulk Weyl cones and surface Fermi arcs, survives in this correlated electron system. Besides, a sharp experimental optical conductivity peak at low energy, which is absent in the single-particle-ab-initio-calculation-derived optical conductivity spectrum but is consistent with the optical conductivity peaks obtained by many-body calculations, indicates that an electronic band connecting the two Weyl cones is flattened by electronic correlations and emerges near the Fermi energy in Co3Sn2S2. Our work paves the way for exploring flat-band-generated quantum phenomena in WSMs

    Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7

    Get PDF
    For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC50 value of 2.76 Β΅g/ml (1.65 Β΅M) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1

    Self-Assembling Peptide-Based Nanoarchitectonics

    Full text link
    Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials

    Self-Assembling Peptide-Based Nanoarchitectonics

    Full text link

    Construction of Resilient Boolean and Vectorial Boolean Functions with High Nonlinearity

    Full text link

    On Resilient Boolean and Vectorial Boolean Functions with High Nonlinearity

    Full text link
    Boolean functions and vectorial Boolean functions are the most important nonlinear components of stream ciphers. They should satisfy several criteria such as high nonlinearity, proper resiliency and so on to guarantee the security of the whole system. However, there are some constraints among the criteria, and how to achieve a trade-off between them is an important issue. In this paper, some nonlinear Boolean functions possessing simple algebraic normal form with special Walsh spectrum are proposed. By using these functions, we provide two construction methods on balanced and resilient Boolean functions with high nonlinearity. In addition, based on the disjoint linear codes and vector matrices with special properties, some resilient vectorial Boolean functions with currently best-known nonlinearity have also been given

    Pulsed Optical Vortex Array Generation in a Self-Q-Switched Tm:YALO<sub>3</sub> Laser

    Full text link
    Optical vortex arrays are characterized by specific orbital angular momentums, and they have important applications in optical trapping and manipulation, optical communications, secure communications, and high-security information processing. Despite widespread research on optical vortex arrays, the 2 ΞΌm wavelength range remains underexplored. Pulsed lasers at 2 ΞΌm are vital in laser medicine, sensing, communications, and nonlinear optic applications. The need for 2 ΞΌm-pulsed structured optical vortices, combining the advantages of this wavelength range and optical vortex arrays, is evident. Therefore, using just three elements in the cavity, we demonstrate a compact self-Q-switched Tm:YALO3 vortex laser by utilizing the self-modulation effect of a laser crystal and a defect spot mirror. By tuning the position of the defect spot and the output coupler, the resonator delivers optical vortex arrays with phase singularities ranging from 1 to 4. The narrowest pulse widths of the TEM00 LG0,βˆ’1, two-, three-, and four-vortex arrays are 543, 1266, 1281, 2379, and 1615 ns, respectively. All the vortex arrays in our study have relatively high-power outputs, slope efficiencies, and single-pulse energies. This work paves the way for a 2 ΞΌm-pulsed structured light source that has potential applications in optical trapping and manipulation, free-space optical communications, and laser medicine

    On Resilient Boolean and Vectorial Boolean Functions with High Nonlinearity

    Full text link
    Boolean functions and vectorial Boolean functions are the most important nonlinear components of stream ciphers. They should satisfy several criteria such as high nonlinearity, proper resiliency and so on to guarantee the security of the whole system. However, there are some constraints among the criteria, and how to achieve a trade-off between them is an important issue. In this paper, some nonlinear Boolean functions possessing simple algebraic normal form with special Walsh spectrum are proposed. By using these functions, we provide two construction methods on balanced and resilient Boolean functions with high nonlinearity. In addition, based on the disjoint linear codes and vector matrices with special properties, some resilient vectorial Boolean functions with currently best-known nonlinearity have also been given
    • …
    corecore