4,593 research outputs found
Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing II: Numerics & Analysis Methodologies
The feasibility of complete photoionization experiments, in which the full
set of photoionization matrix elements are determined, using multiphoton
ionization schemes with polarization-shaped pulses has recently been
demonstrated [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)]. Here we
extend on our previous work to discuss further details of the numerics and
analysis methodology utilised, and compare the results directly to new
tomographic photoelectron measurements, which provide a more sensitive test of
the validity of the results. In so doing we discuss in detail the physics of
the photoionziation process, and suggest various avenues and prospects for this
coherent multiplexing methodology
Maximum information photoelectron metrology
Photoelectron interferograms, manifested in photoelectron angular
distributions (PADs), are a high-information, coherent observable. In order to
obtain the maximum information from angle-resolved photoionization experiments
it is desirable to record the full, 3D, photoelectron momentum distribution.
Here we apply tomographic reconstruction techniques to obtain such 3D
distributions from multiphoton ionization of potassium atoms, and fully analyse
the energy and angular content of the 3D data. The PADs obtained as a function
of energy indicate good agreement with previous 2D data and detailed analysis
[Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral
features, but also indicate unexpected symmetry-breaking in certain regions of
momentum space, thus revealing additional continuum interferences which cannot
otherwise be observed. These observations reflect the presence of additional
ionization pathways and, most generally, illustrate the power of maximum
information measurements of this coherent observable
The Power-law Tail Exponent of Income Distributions
In this paper we tackle the problem of estimating the power-law tail exponent
of income distributions by using the Hill's estimator. A subsample
semi-parametric bootstrap procedure minimising the mean squared error is used
to choose the power-law cutoff value optimally. This technique is applied to
personal income data for Australia and Italy.Comment: Latex2e v1.6; 8 pages with 3 figures; in press (Physica A
Damages for the Wrongful Birth of Healthy Babies
Parents suing for the wrongful birth of healthy babies have recovered diverse damage awards in the courts. The author examines the various damage awards and underlying rationales, and argues that the benefits rule, which offsets the damage recovered for negligently inflicted harm by benefits perceived to flow from such conduct, is inaccurately applied when emotional benefits are weighed against monetary costs. The author concludes that parents should recover all of their proven damages, including child raising expenses
Catalytic Conversion of Dihydroxyacetone to Lactic Acid with Brønsted Acids and Multivalent Metal Ions
The exploitation of by-products from chemical processes shows high potential for the development of new synthesis routes for valuable chemicals. Glycerol, provided as a by-product from the biodiesel manufacturing process, is a potential feedstock chemical. From dihydroxyacetone, a primary oxidation product of glycerol, lactic acid may be obtained. The catalytic effect of Brønsted acids and multivalent metal ions on the conversion of dihydroxyacetone to lactic acid in aqueous solutions was investigated. Lactic acid yields of 83 % were achieved when carrying out the reaction under reflux boiling conditions with the catalyst HCl in excess. High acidity of the reaction solution is essential for the dehydration of dihydroxyacetone to pyruvic aldehyde. Consecutive conversion of pyruvic aldehyde to lactic acid was accelerated by multivalent metal ions (e.g. Al3+). The
Lewis acid Al2(SO4)3 provides both acidic reaction conditions for dehydration of dihydroxyacetone to pyruvic aldehyde and acceleration of lactic acid formation from pyruvic aldehyde. Lactic acid yields of up to 78 % were obtained with Al2(SO4)3
TiB_2 and ZrB_2 diffusion barriers in GaAs Ohmic contact technology
The transition metal diboride compounds, ZrB_2 and TiB_2, interposed between Ni/Ge/Au Ohmic contact metallization on n‐type GaAs wafers and an overlying thick Au contact layer, have been investigated to evaluate their effectiveness in stabilizing the Ohmic contact by limiting the in‐diffusion of Au. All of the metal layers were e‐beam deposited except the ZrB_2 which was rf‐diode sputtered. The barrier layer thicknesses were 50 and 100 nm for the TiB_2 and the ZrB_2, respectively. Postdeposition alloying of the contacts was performed at 400, 425, or 450 °C. Auger electron spectroscopy depth profiling of the resultant Ohmic contacts demonstrates that the barrier layers effectively preclude penetration of Au to the Ohmic contact structure. Specific contact resistivities for such contacts are in the low 10^(−7) Ω cm^2 range; although some degradation of the contact resistivity is observed after long term annealing, the values of resistivities do not exceed 1.5×10^(−6) Ω cm^2 after 92 h at 350 °C
Agents Play Mix-game
In mix-game which is an extension of minority game, there are two groups of
agents; group1 plays the majority game, but the group2 plays the minority game.
This paper studies the change of the average winnings of agents and
volatilities vs. the change of mixture of agents in mix-game model. It finds
that the correlations between the average winnings of agents and the mean of
local volatilities are different with different combinations of agent memory
length when the proportion of agents in group 1 increases. This study result
suggests that memory length of agents in group1 be smaller than that of agent
in group2 when mix-game model is used to simulate the financial markets.Comment: 8 pages, 6 figures, 3 table
Distinct magnetotransport and orbital fingerprints of chiral bobbers
While chiral magnetic skyrmions have been attracting significant attention in
the past years, recently, a new type of a chiral particle emerging in thin
films a chiral bobber has been theoretically predicted and
experimentally observed. Here, based on theoretical arguments, we provide a
clear pathway to utilizing chiral bobbers for the purposes of future
spintronics by uncovering that these novel chiral states possess inherent
transport fingerprints that allow for their unambiguous electrical detection in
systems comprising several types of chiral states. We reveal that unique
transport and orbital characteristics of bobbers root in the non-trivial
magnetization distribution in the vicinity of the Bloch points, and demonstrate
that tuning the details of the Bloch point topology can be used to drastically
alter the emergent response properties of chiral bobbers to external fields,
which bears great potential for engineering chiral dynamics and cognitive
computing.Comment: Supplementary available upon reques
Direct and dynamic detection of HIV-1 in living cells.
In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA) at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research
- …