27 research outputs found

    Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Get PDF
    Nanoporous bioglass containing silver (n-BGS) was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag) had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time) compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage

    Laboratory experiment on the nano-TiO2 photocatalytic degradation effect of road surface oil pollution

    No full text
    Oil leak from vehicles is one of the most common pollution types of the road. The spilled oil could be retained on the surface and spread in the air voids of the road, which results in a decrease in the friction coefficient of the road, affects driving safety, and causes damage to pavement materials over time. Photocatalytic degradation through nano-TiO2 is a safe, long-lasting, and sustainable technology among the many methods for treating oil contamination on road surfaces. In this study, the nano-TiO2 photocatalytic degradation effect of road surface oil pollution was evaluated through the lab experiment. First, a glass dish was used as a substrate to determine the basic working condition of the test; then, a test method considering the impact of different oil erosion degrees was proposed to eliminate the effect of oil erosion on asphalt pavement and leakage on cement pavement, which led to the development of a lab test method for the nano-TiO2 photocatalytic degradation effect of oil pollution on different road surfaces

    A Lightweight and Drift-Free Fusion Strategy for Drone Autonomous and Safe Navigation

    No full text
    Self-localization and state estimation are crucial capabilities for agile drone autonomous navigation. This article presents a lightweight and drift-free vision-IMU-GNSS tightly coupled multisensor fusion (LDMF) strategy for drones’ autonomous and safe navigation. The drone is carried out with a front-facing camera to create visual geometric constraints and generate a 3D environmental map. Ulteriorly, a GNSS receiver with multiple constellations support is used to continuously provide pseudo-range, Doppler frequency shift and UTC time pulse signals to the drone navigation system. The proposed multisensor fusion strategy leverages the Kanade–Lucas algorithm to track multiple visual features in each input image. The local graph solution is bounded in a restricted sliding window, which can immensely predigest the computational complexity in factor graph optimization procedures. The drone navigation system can achieve camera-rate performance on a small companion computer. We thoroughly experimented with the LDMF system in both simulated and real-world environments, and the results demonstrate dramatic advantages over the state-of-the-art sensor fusion strategies

    Effect of cement slurry impregnation–carbonation strengthening on the properties of low-quality recycled concrete aggregate

    No full text
    Recycled concrete aggregate (RCA) presents several challenges such as irregular shape, high water absorption, high crushing value, and low apparent density, which restrict its application in concrete. Although carbonation technology offers a more effective solution, its effect on inferior RCA remains unclear. Compared to its common counterpart, inferior RCA is characterized by longer aging time, lower crushing value, and reduced carbonizable substances. This study focuses on low-quality RCA, employing a method of impregnation and carbonation with cement slurry to strengthen the properties of RCA. The investigation studied the carbonation system (hydration time + carbonation time), water–cement ratio of the cement paste, and carbonation effects and mechanisms via mercury injection, nanoindentation tests, X-ray diffraction, and scanning electron microscopy. The findings indicate that the optimal carbonation system involves hydration for 1 d and carbonation for 14 d (H1d + C14d). In this system, the water–cement ratio exhibits minimal influence on carbonation depth. After the impregnation–carbonation treatment, RCA displayed the best performance improvement at a water–cement ratio of 0.8 (0.8-RCA). This condition resulted in a 15.41% reduction in crushing value and an 18.00% decrease in porosity alongside a 21.42% increase in apparent density. Moreover, the interfacial transition zone (ITZ) between aggregate and mortar and the elastic modulus of adhesive mortar are improved after strengthening. Compared with the primitive RCA, the distribution of Ca2+ in the adhesive mortar of the strengthened RCA was more uniform and denser. The moderately fluid cement slurry penetrated the RCA pores easily, enabling CaCO3 produced by carbonation to efficiently fill defects

    Perceiving like a Bat: Hierarchical 3D Geometric–Semantic Scene Understanding Inspired by a Biomimetic Mechanism

    No full text
    Geometric–semantic scene understanding is a spatial intelligence capability that is essential for robots to perceive and navigate the world. However, understanding a natural scene remains challenging for robots because of restricted sensors and time-varying situations. In contrast, humans and animals are able to form a complex neuromorphic concept of the scene they move in. This neuromorphic concept captures geometric and semantic aspects of the scenario and reconstructs the scene at multiple levels of abstraction. This article seeks to reduce the gap between robot and animal perception by proposing an ingenious scene-understanding approach that seamlessly captures geometric and semantic aspects in an unexplored environment. We proposed two types of biologically inspired environment perception methods, i.e., a set of elaborate biomimetic sensors and a brain-inspired parsing algorithm related to scene understanding, that enable robots to perceive their surroundings like bats. Our evaluations show that the proposed scene-understanding system achieves competitive performance in image semantic segmentation and volumetric–semantic scene reconstruction. Moreover, to verify the practicability of our proposed scene-understanding method, we also conducted real-world geometric–semantic scene reconstruction in an indoor environment with our self-developed drone

    Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED

    No full text
    The resolution of optical microscopes is limited by the optical diffraction limit; in particular, the axial resolution is much lower than the lateral resolution, which hinders the clear distinction of the three-dimensional (3D) structure of cells. Although stimulated emission depletion (STED) superresolution microscopy can break through the optical diffraction limit to achieve 3D superresolution imaging, traditional 3D STED requires high depletion laser power to acquire high-resolution images, which can cause irreversible light damage to biological samples and probes. Therefore, we developed an ultralow laser power 3D STED superresolution imaging method. On the basis of this method, we obtained lateral and axial resolutions of 71 nm and 144 nm, respectively, in fixed cells with 0.65 mW depletion laser power. This method will have broad application prospects in 3D superresolution imaging of living cells

    RRVPE: A Robust and Real-Time Visual-Inertial-GNSS Pose Estimator for Aerial Robot Navigation

    No full text
    Self-localization and orientation estimation are the essential capabilities for mobile robot navigation. In this article, a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System) tightly coupled pose estimation (RRVPE) method for aerial robot navigation is presented. The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map. Ulteriorly, a GNSS receiver is used to continuously provide pseudorange, Doppler frequency shift and universal time coordinated (UTC) pulse signals to the pose estimator. The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame, and the local factor graph solution process is bounded in a circumscribed container, which can immensely abandon the computational complexity in nonlinear optimization procedure. The proposed robot pose estimator can achieve camera-rate (30 Hz) performance on the aerial robot companion computer. We thoroughly experimented the RRVPE system in both simulated and practical circumstances, and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators

    Nanodrug Transmembrane Transport Research Based on Fluorescence Correlation Spectroscopy

    No full text
    Although conventional fluorescence intensity imaging can be used to qualitatively study the drug toxicity of nanodrug carrier systems at the single-cell level, it has limitations for studying nanodrug transport across membranes. Fluorescence correlation spectroscopy (FCS) can provide quantitative information on nanodrug concentration and diffusion in a small area of the cell membrane; thus, it is an ideal tool for studying drug transport across the membrane. In this paper, the FCS method was used to measure the diffusion coefficients and concentrations of carbon dots (CDs), doxorubicin (DOX) and CDs-DOX composites in living cells (COS7 and U2OS) for the first time. The drug concentration and diffusion coefficient in living cells determined by FCS measurements indicated that the CDs-DOX composite distinctively improved the transmembrane efficiency and rate of drug molecules, in accordance with the conclusions drawn from the fluorescence imaging results. Furthermore, the effects of pH values and ATP concentrations on drug transport across the membrane were also studied. Compared with free DOX under acidic conditions, the CDs-DOX complex has higher cellular uptake and better transmembrane efficacy in U2OS cells. Additionally, high concentrations of ATP will cause negative changes in cell membrane permeability, which will hinder the transmembrane transport of CDs and DOX and delay the rapid diffusion of CDs-DOX. The results of this study show that the FCS method can be utilized as a powerful tool for studying the expansion and transport of nanodrugs in living cells, and might provide a new drug exploitation strategy for cancer treatment in vivo
    corecore