376 research outputs found

    Strengthening Implicitly-formed Attitudes: The Use of Evaluative Conditioning and Selective Exposure

    Get PDF
    Implicit attitudes are defined as unconsciously-formed evaluations towards an object or the self. Although the very nature of unconsciously formed attitudes may appear to be too weak to be significant to modern theories of attitudes, we challenge that these minute unconscious attitudes can inadvertently affect cognitive information processing which ultimately manifests into stronger attitudes. Here we demonstrate that implicitly formed attitudes can eventually lead to biased behaviors that can positively reinforce themselves which is consistent with the effects of strong attitudes suggested by contemporary research on attitudes. In order to mimic the formation of implicit attitudes, we developed an evaluative conditioning procedure that was designed to invoke attitudes without conscious memory of the conditioned stimulus. Students from a large southeastern university participated in the study, where they went through a process of evaluative conditioning. A group of randomly selected participants were then asked to complete a selective exposure task. Participants who were in the selective exposure task and had contingency memory of the pairing of the unconditioned stimulus and conditioned stimulus were shown to have strengthened attitudes

    Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations

    Full text link
    L\"uscher's method is routinely used to determine meson-meson, meson-baryon and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from Lattice QCD calculations - presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase-shifts describing meson-meson scattering in partial-waves with angular-momentum l<=6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase-shifts from Lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial-waves.Comment: 79 pages, 41 figure

    Formulation of gradient multiaxial fatigue criteria

    No full text
    International audienceA formulation of gradient fatigue criteria is proposed in the context of multiaxial high-cycle fatigue (HCF) of metallic materials. The notable dependence of fatigue limit on some common factors not taken into account in classical fatigue criteria, is analyzed and modeled. Three interconnected factors, the size, stress gradient and loading effects, are here investigated. A new class of fatigue criteria extended from classical ones with stress gradient terms introduced not only in the normal stress but also in the shear stress components, is formulated. Such a formulation allows to capture gradient effects and related “size” effects, as well as to cover a wide range of loading mode, then can model both phenomena “Smaller is Stronger” and “Higher Gradient is Stronger”. Gradient versions of some classical fatigue criteria such as Crossland and Dang Van are provided as illustrations

    A review on life cycle environmental impacts of emerging solar cells

    Get PDF
    The development of solar technologies requires increased efficiency in converting solar radiation to energy, as well as innovative materials and structure to go beyond the conventional power conversion ratio. In line with these innovations, there are concerns about greenhouse gas emissions of the solar cells, materials for the solar technologies and other relevant environmental impacts of the manufacturing processes. This review is conducted on life cycle assessments of solar cells, considering the climate change and natural resource shortage context. It is identified that the majority of existing life cycle assessments on solar cells take into account four typical environmental impacts: energy consumption, greenhouse gas emissions, material depletion, and toxicity. Though the diverse methodological aspects make it difficult to directly compare these environmental impacts among various types of solar cells, the obtained results hinder that emerging solar cells such as perovskite solar cells or tandem solar cells are likely to have better environmental profiles than conventional silicon based and thin film solar cells, in terms of energy consumption, greenhouse gas emissions and material consumption. However, the emerging solar cells may utilize toxic materials in which their eco-toxicity and human toxicity should be further considered during the design of the technologies. Moreover, it is identified that the energy and environmental hotspot lies in the manufacturing process, regardless of impact indicators and types of solar cells

    Integrated hybrid multi-regional input-output for assessing life cycle air emissions of the Italian power system

    Get PDF
    The air emissions of the Italian power system, as well as national emissions between 2010 and 2017 and projections to 2040, have been assessed from a lifecycle perspective, using an integrated hybrid two-region input-output model of Italy versus the rest of the world. The Italian economy is divided into 42 sectors, including electricity, which is further disaggregated into seven technologies. Detailed electricity sector data, from Istat, are fed into the EXIOBASE input-output database. NAMEA tables represent overall air emissions, while the Ecoinvent database is used for the electricity sector. Electricity transition scenarios from Terna and Snam have been integrated into input-output and air emission databases. Demand and emissions were tracked within the electricity sector over medium-term, and the findings showed a sharp decrease between 2017 and 2025, from 97.5 MtCO2 to 32.6 MtCO2. By 2040, air emissions from the electricity sector are expected to grow gradually, compared to those of 2030, from 22.2 MtCO2 to 25.9 MtCO2, suggesting that the demand between 2030 and 2040 grows faster than the decarbonization effort during the same period. There is an overall, gradual downtrend between 2010 and 2040, with all air emission categories declining by half from both production and consumption-based perspectives in this period

    Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review

    Get PDF
    The food sector is responsible for a considerable impact on the environment in most environmental contexts: the food supply chain causes greenhouse gas emissions, water consumption, reduction in cultivable land, and other environmental impacts. Thus, a change in food supply is required to reduce the environmental impacts caused by the food supply chain and to meet the increasing demand for sufficient and qualitative nutrition. Large herds of livestock are inappropriate to achieve these goals due to the relevant impact of meat supply chain on the environment, e.g., the land used to grow feed for animals is eight times more than that for human nutrition. The search for meat alternatives, especially for the intake of critical nutrients such as protein, is a consequent step. In the above context, this paper summarizes the health aspects of protein-rich food alternatives to meat and carries out a literature review on the life-cycle environmental impacts of this alternative food

    Mechanization in land preparation and irrigation water productivity: Insights from rice production

    Get PDF
    This study investigates how and to what extent mechanization in land preparation (MLP) can help improve irrigation water productivity (IWP) (measured as rice yield per unit volume of irrigation water). We employed an endogenous treatment regression model to estimate the 2021 China Land Economic Survey (CLES) data collected from Jiangsu province, China. The results reveal that MLP adoption increases IWP significantly; a higher IWP is determined by whether or not farmers adopt MLP rather than through which channel they access their farm machines; the effects of MLP adoption on IWP are monotonically increasing across the selected quantiles

    Enhancing genomics-based outbreak detection of endemic Salmonella enterica serovar Typhimurium using dynamic thresholds.

    Full text link
    Salmonella enterica serovar Typhimurium is the leading cause of salmonellosis in Australia, and the ability to identify outbreaks and their sources is vital to public health. Here, we examined the utility of whole-genome sequencing (WGS), including complete genome sequencing with Oxford Nanopore technologies, in examining 105 isolates from an endemic multi-locus variable number tandem repeat analysis (MLVA) type over 5 years. The MLVA type was very homogeneous, with 90 % of the isolates falling into groups with a five SNP cut-off. We developed a new two-step approach for outbreak detection using WGS. The first clustering at a zero single nucleotide polymorphism (SNP) cut-off was used to detect outbreak clusters that each occurred within a 4 week window and then a second clustering with dynamically increased SNP cut-offs were used to generate outbreak investigation clusters capable of identifying all outbreak cases. This approach offered optimal specificity and sensitivity for outbreak detection and investigation, in particular of those caused by endemic MLVA types or clones with low genetic diversity. We further showed that inclusion of complete genome sequences detected no additional mutational events for genomic outbreak surveillance. Phylogenetic analysis found that the MLVA type was likely to have been derived recently from a single source that persisted over 5 years, and seeded numerous sporadic infections and outbreaks. Our findings suggest that SNP cut-offs for outbreak cluster detection and public-health surveillance should be based on the local diversity of the relevant strains over time. These findings have general applicability to outbreak detection of bacterial pathogens
    • …
    corecore