6 research outputs found

    Complete genome characterization of two wild-type measles viruses from Vietnamese infants during the 2014 outbreak

    Get PDF
    A large measles virus outbreak occurred across Vietnam in 2014. We identified and obtained complete measles virus genomes in stool samples collected from two diarrheal pediatric patients in Dong Thap Province. These are the first complete genome sequences of circulating measles viruses in Vietnam during the 2014 measles outbreak

    Genome sequences of a novel Vietnamese bat bunyavirus

    Get PDF
    To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined

    Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes.

    No full text
    The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses

    Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes.

    No full text
    The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses

    Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains

    No full text
    The Coronaviridae family of viruses encompasses a group of pathogens with a zoonotic potential as observed from previous outbreaks of the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Accordingly, it seems important to identify and document the coronaviruses in animal reservoirs, many of which are uncharacterized and potentially missed by more standard diagnostic assays. A combination of sensitive deep sequencing technology and computational algorithms is essential for virus surveillance, especially for characterizing novel- or distantly related virus strains. Here, we explore the use of profile Hidden Markov Model-defined Pfam protein domains (Pfam domains) encoded by new sequences as a Coronaviridae sequence classification tool. The encoded domains are used first in a triage to identify potential Coronaviridae sequences and then processed using a Random Forest method to classify the sequences to the Coronaviridae genus level. The application of this algorithm on Coronaviridae genomes assembled from agnostic deep sequencing data from surveillance of bats and rats in Dong Thap province (Vietnam) identified thirty-four Alphacoronavirus and eleven Betacoronavirus genomes. This collection of bat and rat coronaviruses genomes provided essential information on the local diversity of coronaviruses and substantially expanded the number of coronavirus full genomes available from bat and rats and may facilitate further molecular studies on this group of viruses
    corecore