20 research outputs found

    Development and comparison of novel multiple cross displacement amplification (MCDA) assays with other nucleic acid amplification methods for SARS-CoV-2 detection

    Full text link
    The development of alternative isothermal amplification assays including multiple cross displacement amplification (MCDA) may address speed and portability limitations of real-time PCR (rt-PCR) methods for SARS-CoV-2 detection. We developed a novel SARS-CoV-2 MCDA assay and compared its speed and sensitivity to loop-mediated isothermal amplification (LAMP) and rt-PCR. Two MCDA assays targeting SARS-CoV-2 N gene and ORF1ab were designed. The fastest time to detection and sensitivity of MCDA was compared to LAMP and rt-PCR using DNA standards and transcribed RNA. For the N gene, MCDA was faster than LAMP and rt-PCR by 10 and 20 min, respectively with fastest time to detection at 5.2 min. rt-PCR had the highest sensitivity with the limit of detection at 10 copies/µl compared with MCDA (100 copies/µl) and LAMP (500 copies/µl). For ORF1ab, MCDA and LAMP had similar speed with fastest time to detection at 9.7 and 8.4 min, respectively. LAMP was more sensitive for ORF1ab detection with 50 copies/µl compared to MCDA (500 copies/µl). In conclusion, different nucleic acid amplification methods provide different advantages. MCDA is the fastest nucleic acid amplification method for SARS-CoV-2 while rt-PCR is the most sensitive. These advantages should be considered when determining the most suitable nucleic acid amplification methods for different applications

    Comparative Phosphoproteomics of Classical Bordetellae Elucidates the Potential Role of Serine, Threonine and Tyrosine Phosphorylation in Bordetella Biology and Virulence.

    Full text link
    The Bordetella genus is divided into two groups: classical and non-classical. Bordetella pertussis, Bordetella bronchiseptica and Bordetella parapertussis are known as classical bordetellae, a group of important human pathogens causing whooping cough or whooping cough-like disease and hypothesized to have evolved from environmental non-classical bordetellae. Bordetella infections have increased globally driving the need to better understand these pathogens for the development of new treatments and vaccines. One unexplored component in Bordetella is the role of serine, threonine and tyrosine phosphorylation. Therefore, this study characterized the phosphoproteome of classical bordetellae and examined its potential role in Bordetella biology and virulence. Applying strict identification of localization criteria, this study identified 70 unique phosphorylated proteins in the classical bordetellae group with a high degree of conservation. Phosphorylation was a key regulator of Bordetella metabolism with proteins involved in gluconeogenesis, TCA cycle, amino acid and nucleotide synthesis significantly enriched. Three key virulence pathways were also phosphorylated including type III secretion system, alcaligin synthesis and the BvgAS master transcriptional regulatory system for virulence genes in Bordetella. Seven new phosphosites were identified in BvgA with 6 located in the DNA binding domain. Of the 7, 4 were not present in non-classical bordetellae. This suggests that serine/threonine phosphorylation may play an important role in stabilizing/destabilizing BvgA binding to DNA for fine-tuning of virulence gene expression and that BvgA phosphorylation may be an important factor separating classical from non-classical bordetellae. This study provides the first insight into the phosphoproteome of classical Bordetella species and the role that Ser/Thr/Tyr phosphorylation may play in Bordetella biology and virulence

    Comparison of the Whole Cell Proteome and Secretome of Epidemic Bordetella pertussis Strains From the 2008-2012 Australian Epidemic Under Sulfate-Modulating Conditions.

    Full text link
    Sulfate is an important modulator for virulence factor expression in Bordetella pertussis, the causative organism for whooping cough. During infection, sulfate is released when respiratory epithelial cells are damaged which can affect gene expression. The current predominant strains in Australia are found in single nucleotide polymorphism (SNP) cluster I (ptxP3/prn2). It has been reported that ptxP3 strains have higher mRNA expression of virulence genes than ptxP1 strains under intermediate sulfate-modulating conditions (5 mM MgSO4). Our previous proteomic study compared L1423 (cluster I, ptxP3) and L1191 (cluster II, ptxP1) in Thalen-IJssel (THIJS) media without sulfate modulation and identified an upregulation of transport proteins and a downregulation of immunogenic proteins. To determine whether proteomic differences exist between cluster I and cluster II strains in intermediate modulating conditions, this study compared the whole cell proteome and secretome between L1423 and L1191 grown in THIJS media with 5 mM MgSO4 using iTRAQ and high-resolution multiple reaction monitoring (MRM-hr). Two proteins (BP0200 and BP1175) in the whole cell were upregulated in L1423 [fold change (FC) >1.2, false discovery rate (FDR) <0.05]. In the secretome, four proteins from the type III secretion system (T3SS) effectors were downregulated (FC < 0.8, FDR < 0.05) while six proteins, including two adhesins, pertactin (Prn) and tracheal colonization factor A (TcfA), were upregulated which were consistent with our previous proteomic study. The upregulation of Prn and TcfA in SNP cluster I may result in improved adhesion while the downregulation of the T3SS and other immunogenic proteins may reduce immune recognition, which may contribute to the increased fitness of cluster I B. pertussis strains

    Enhancing genomics-based outbreak detection of endemic Salmonella enterica serovar Typhimurium using dynamic thresholds.

    Full text link
    Salmonella enterica serovar Typhimurium is the leading cause of salmonellosis in Australia, and the ability to identify outbreaks and their sources is vital to public health. Here, we examined the utility of whole-genome sequencing (WGS), including complete genome sequencing with Oxford Nanopore technologies, in examining 105 isolates from an endemic multi-locus variable number tandem repeat analysis (MLVA) type over 5 years. The MLVA type was very homogeneous, with 90 % of the isolates falling into groups with a five SNP cut-off. We developed a new two-step approach for outbreak detection using WGS. The first clustering at a zero single nucleotide polymorphism (SNP) cut-off was used to detect outbreak clusters that each occurred within a 4 week window and then a second clustering with dynamically increased SNP cut-offs were used to generate outbreak investigation clusters capable of identifying all outbreak cases. This approach offered optimal specificity and sensitivity for outbreak detection and investigation, in particular of those caused by endemic MLVA types or clones with low genetic diversity. We further showed that inclusion of complete genome sequences detected no additional mutational events for genomic outbreak surveillance. Phylogenetic analysis found that the MLVA type was likely to have been derived recently from a single source that persisted over 5 years, and seeded numerous sporadic infections and outbreaks. Our findings suggest that SNP cut-offs for outbreak cluster detection and public-health surveillance should be based on the local diversity of the relevant strains over time. These findings have general applicability to outbreak detection of bacterial pathogens

    Enhancing genomics-based outbreak detection of endemic salmonella enterica serovar typhimurium using dynamic thresholds

    Full text link
    Salmonella enterica serovar Typhimurium is the leading cause of salmonellosis in Australia, and the ability to identify outbreaks and their sources is vital to public health. Here, we examined the utility of whole-genome sequencing (WGS), including complete genome sequencing with Oxford Nanopore technologies, in examining 105 isolates from an endemic multi-locus variable number tandem repeat analysis (MLVA) type over 5 years. The MLVA type was very homogeneous, with 90 % of the isolates falling into groups with a five SNP cut-off. We developed a new two-step approach for outbreak detection using WGS. The first clustering at a zero single nucleotide polymorphism (SNP) cut-off was used to detect outbreak clusters that each occurred within a 4 week window and then a second clustering with dynamically increased SNP cut-offs were used to generate outbreak investigation clusters capable of identifying all outbreak cases. This approach offered optimal specificity and sensitivity for outbreak detection and investigation, in particular of those caused by endemic MLVA types or clones with low genetic diversity. We further showed that inclusion of complete genome sequences detected no additional mutational events for genomic outbreak surveillance. Phylogenetic analysis found that the MLVA type was likely to have been derived recently from a single source that persisted over 5 years, and seeded numerous sporadic infections and outbreaks. Our findings suggest that SNP cut-offs for outbreak cluster detection and public-health surveillance should be based on the local diversity of the relevant strains over time. These findings have general applicability to outbreak detection of bacterial pathogens

    Pertactin-negative and filamentous hemagglutinin-negative Bordetella pertussis, Australia, 2013-2017

    Full text link
    During the 2008-2012 pertussis epidemic in Australia, pertactin (Prn)-negative Bordetella pertussis emerged. We analyzed 78 isolates from the 2013-2017 epidemic and documented continued expansion of Prn-negative ptxP3 B. pertussis strains. We also detected a filamentous hemagglutinin- negative and Prn-negative B. pertussis isolate

    A one-step, one-pot CRISPR nucleic acid detection platform (CRISPR-top): Application for the diagnosis of COVID-19.

    Full text link
    The existing CRISPR-mediated diagnostic tests require a two-step procedure (DNA or RNA amplification followed by CRISPR-mediated sequence-specific detection) for nucleic acid detection, which increases complexity and the risk of sample cross-contamination. Here, we report a new CRISPR-mediated test, called CRISPR-top (CRISPR-mediated testing in one-pot), which integrates simultaneous target pre-amplification with CRISPR/cas12b-mediated detection into a one-pot reaction mixture, performed at a constant temperature. The novel CRISPR-top assay was applied to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19 (coronavirus disease 2019). COVID-19 CRISPR-top targets the ORF1ab (opening reading frame 1a/b) and NP (nucleoprotein) genes of SARS-CoV-2, and operates at 59 °C for 40 min with minimal instrument. The COVID-19 CRISPR-top assay can return results within 60-min and is easily interpreted by visual fluorescence or lateral flow readouts. The analytical limit of detection (LoD) for COVID-19 CRISPR-top is 10 copies (for each detection target) per reaction with no cross-reactivity observed from non-SARS-CoV-2 templates. Among clinically collected non-COVID-19 samples, the assay's specificity was 100% (80/80 oropharynx swab samples). Among 52 COVID-19 positive clinical samples collected, the COVID-19 CRISPR-top assay yielded 38 (73.1%) positive results using fluorescence readout and 35 (67.3%) positive results with lateral-flow readout. These diagnostic results were similar to those obtained using RT-PCR (34 positive (65.4%)). These data indicate that COVID-19 CRISPR-top is a simple, rapid, accurate and highly sensitive method for SARS-CoV-2 detection which can be used in the clinic, field laboratories and primary care facilities in resource-challenged settings

    Pathogen adaptation to vaccination: The Australian Bordetella pertussis story

    Full text link
    Whooping cough (pertussis) is a highly contagious vaccine preventable respiratory disease caused by the Gram-negative bacterium Bordetella pertussis. Despite high level vaccination coverage over the past 20 years, Australia has one of the highest per capita burdens of pertussis globally. Oneof theprimaryfactors associated withthere-emergence of pertussis is pathogen adaptation of B. pertussis to the current acellular vaccines used. This article will focusonthe genomic and proteomic changes that have occurred in the Australian B. pertussis population, the significance of these adaptive changes on fitness in a vaccinated environment and what we can do to reduce the significant burden of pertussis in the future

    Development and comparison of novel multiple cross displacement amplification (MCDA) assays with other nucleic acid amplification methods for SARS-CoV-2 detection.

    Full text link
    The development of alternative isothermal amplification assays including multiple cross displacement amplification (MCDA) may address speed and portability limitations of real-time PCR (rt-PCR) methods for SARS-CoV-2 detection. We developed a novel SARS-CoV-2 MCDA assay and compared its speed and sensitivity to loop-mediated isothermal amplification (LAMP) and rt-PCR. Two MCDA assays targeting SARS-CoV-2 N gene and ORF1ab were designed. The fastest time to detection and sensitivity of MCDA was compared to LAMP and rt-PCR using DNA standards and transcribed RNA. For the N gene, MCDA was faster than LAMP and rt-PCR by 10 and 20 min, respectively with fastest time to detection at 5.2 min. rt-PCR had the highest sensitivity with the limit of detection at 10 copies/µl compared with MCDA (100 copies/µl) and LAMP (500 copies/µl). For ORF1ab, MCDA and LAMP had similar speed with fastest time to detection at 9.7 and 8.4 min, respectively. LAMP was more sensitive for ORF1ab detection with 50 copies/µl compared to MCDA (500 copies/µl). In conclusion, different nucleic acid amplification methods provide different advantages. MCDA is the fastest nucleic acid amplification method for SARS-CoV-2 while rt-PCR is the most sensitive. These advantages should be considered when determining the most suitable nucleic acid amplification methods for different applications

    Proteomic Adaptation of Australian Epidemic Bordetella pertussis.

    Full text link
    Bordetella pertussis causes whooping cough. The predominant strains in Australia changed to single nucleotide polymorphism (SNP) cluster I (pertussis toxin promoter allele ptxP3/pertactin gene allele prn2) from cluster II (non-ptxP3/non-prn2). Cluster I was mostly responsible for the 2008-2012 Australian epidemic and was found to have higher fitness compared to cluster II using an in vivo mouse competition assay, regardless of host's immunization status. This study aimed to identify proteomic differences that explain higher fitness in cluster I using isobaric tags for relative and absolute quantification (iTRAQ), and high-resolution multiple reaction monitoring (MRM-hr). A few key differences in the whole cell and secretome were identified between the cluster I and II strains tested. In the whole cell, nine proteins were upregulated (>1.2 fold change, q < 0.05) and three were downregulated (<0.8 fold change, q < 0.05) in cluster I. One downregulated protein was BP1569, a TLR2 agonist for Th1 immunity. In the secretome, 12 proteins were upregulated and 1 was downregulated which was Bsp22, a type III secretion system (T3SS) protein. Furthermore, there was a trend of downregulation in three T3SS effectors and other virulence factors. Three proteins were upregulated in both whole cell and supernatant: BP0200, molybdate ABC transporter (ModB), and tracheal colonization factor A (TcfA). Important expression differences in lipoprotein, T3SS, and transport proteins between the cluster I and II strains were identified. These differences may affect immune evasion, virulence and metabolism, and play a role in increased fitness of cluster I
    corecore