7 research outputs found

    Effect of antiretroviral HIV therapy on hepatitis B virus replication and pathogenicity

    Get PDF
    Coinfections with hepatitis B virus (HBV) and HIV are very frequent. Although HBV is a DNA virus, it replicates via reverse transcription like HIV. Structural similarities between the enzymatic pocket of the HBV DNA polymerase and HIV-1 reverse transcriptase are the basis that certain drugs inhibit both enzymes and thus the replication of both viruses. HBV components increase the pathogenic action of HIV and vice versa directly by certain proteins like HBsAg in the case of HBV and HIV-encoded Tat and Vpr and by disturbing the cytokine balance in affected cells. Antiretroviral therapy is highly beneficial for HIV/HBV-coinfected patients, but carries the risk of drug-induced resistance development and hepatotoxicity. Even with restoration of the immune capacity, signs of hepatic inflammation may develop even after 10 years of treatment

    Various Types of HIV Mixed Infections in Cameroon

    Get PDF
    AbstractIn order to assess the incidence of HIV mixed infection as well as to clarify the molecular epidemiology of HIV in central Africa, we investigated 43 HIVs obtained from 211 Cameroonian AC, ARC, and AIDS patients in 1994 and 1995. Part of thepolregion and part of theenvregion were phylogenetically analyzed. The genotypes observed were varied: of 43 specimens, 28 (65%) were subtype A, 1 (2%) was subtype B, 2 (5%) were subtype D, 3 (7%) were subtype F, and 2 (5%) were group O. Of the remaining 7 specimens, 3 were mixed infections with HIV-1 subtypes A and C, HIV-1 subtypes C and F, and HIV-2 subtype A and HIV-1 subtype A; 1 was a mixed infection with HIV-1 subtypes A and D and the highly divergent group O (triple infection); another 3 appeared to consist of mosaic genomes (A/G, A/E, and B/A recombinant). These data show that various types of mixed infection, such as between different subtypes of HIV-1 group M, between HIV-1 and HIV-2, and even between HIV-1 groups O and M, were confirmed at a rather high frequency (approximately 10%). The mixed infection is particularly significant where there is a greater variety of HIV-1 subtypes circulating, since it results in new genetic diversity generated by intersubtype recombination

    HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies

    Get PDF
    HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base

    Regional spread of HIV-1 M subtype B in middle-aged patients by random env-C2V4 region sequencing

    Get PDF
    A transmission cluster of HIV-1 M:B was identified in 11 patients with a median age of 52 (range 26–65) in North-East Germany by C2V4 region sequencing of the env gene of HIV-1, who—except of one—were not aware of any risky behaviour. The 10 male and 1 female patients deteriorated immunologically, according to their information made available, within 4 years after a putative HIV acquisition. Nucleic acid sequence analysis showed a R5 virus in all patients and in 7 of 11 a crown motif of the V3 loop, GPGSALFTT, which is found rarely. Analysis of formation of this cluster showed that there is still a huge discrepancy between awareness and behaviour regarding HIV transmission in middle-aged patients, and that a local outbreak can be detected by nucleic acid analysis of the hypervariable env region

    Pathogen reduction/inactivation of products for the treatment of bleeding disorders:what are the processes and what should we say to patients?

    Get PDF
    Patients with blood disorders (including leukaemia, platelet function disorders and coagulation factor deficiencies) or acute bleeding receive blood-derived products, such as red blood cells, platelet concentrates and plasma-derived products. Although the risk of pathogen contamination of blood products has fallen considerably over the past three decades, contamination is still a topic of concern. In order to counsel patients and obtain informed consent before transfusion, physicians are required to keep up to date with current knowledge on residual risk of pathogen transmission and methods of pathogen removal/inactivation. Here, we describe pathogens relevant to transfusion of blood products and discuss contemporary pathogen removal/inactivation procedures, as well as the potential risks associated with these products: the risk of contamination by infectious agents varies according to blood product/region, and there is a fine line between adequate inactivation and functional impairment of the product. The cost implications of implementing pathogen inactivation technology are also considered

    Mycosis fungoides

    Full text link
    corecore