4 research outputs found

    Sigma Nonopioid Intracellular Receptor 1 Mutations Cause Frontotemporal Lobar Degeneration-Motor Neuron Disease

    No full text
    Objective: Frontotemporal lobar degeneration (FTLD) is the most common cause of early-onset dementia. Pathological ubiquitinated inclusion bodies observed in FTLD and motor neuron disease (MND) comprise trans-activating response element (TAR) DNA binding protein (TDP-43) and/or fused in sarcoma (FUS) protein. Our objective was to identify the causative gene in an FTLD-MND pedigree with no mutations in known dementia genes. Methods: A mutation screen of candidate genes, luciferase assays, and quantitative polymerase chain reaction (PCR) was performed to identify the biological role of the putative mutation. Neuropathological characterization of affected individuals and western blot studies of cell lines were performed to identify the pathological mechanism of the mutation. Results: We identified a nonpolymorphic mutation (c.67251G>T) in the 3?-untranslated region (UTR) of the Sigma nonopioid intracellular receptor 1 (SIGMAR1) gene in affected individuals from the FTLD-MND pedigree. The c.67251G>T mutation increased gene expression by 1.4-fold, corresponding with a significant 1.5-fold to 2-fold change in the SIGMAR1 transcript or Sigma-1 protein in lymphocyte or brain tissue. Brains of SIGMAR1 mutation carriers displayed a unique pathology with cytoplasmic inclusions immunopositive for either TDP-43 or FUS but not Sigma-1. Overexpression of SIGMAR1 shunted TDP-43 and FUS from the nucleus to the cytoplasm by 2.3-fold and 5.2-fold, respectively. Treatment of cells with Sigma-1 ligands significantly altered translocation of TDP-43 by up to 2-fold. Interpretation: SIGMAR1 is a causative gene for familial FTLD-MND with a unique neuropathology that differs from other FTLD and MND cases. Our findings also suggest Sigma-1 drugs as potential treatments for the TDP-43/FUS proteinopathies.11 page(s

    Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1-q12.2: genetic, clinical and neuropathological analysis

    Get PDF
    Numerous families exhibiting both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have been described, and although many of these have been shown to harbour a repeat expansion in C9ORF72, several C9ORF72-negative FTD-ALS families remain. We performed neuropathological and genetic analysis of a large European Australian kindred (Aus-12) with autosomal dominant inheritance of dementia and/or ALS. Affected Aus-12 members developed either ALS or dementia; some of those with dementia also had ALS and/or extrapyramidal features. Neuropathology was most consistent with frontotemporal lobar degeneration with type B TDP pathology, but with additional phosphorylated tau pathology consistent with corticobasal degeneration. Aus-12 DNA samples were negative for mutations in all known dementia and ALS genes, including C9ORF72 and FUS. Genome-wide linkage analysis provided highly suggestive evidence (maximum multipoint LOD score of 2.9) of a locus on chromosome 16p12.1–16q12.2. Affected individuals shared a chromosome 16 haplotype flanked by D16S3103 and D16S489, spanning 37.9 Mb, with a smaller suggestive disease haplotype spanning 24.4 Mb defined by recombination in an elderly unaffected individual. Importantly, this smaller region does not overlap with FUS. Whole-exome sequencing identified four variants present in the maximal critical region that segregate with disease. Linkage analysis incorporating these variants generated a maximum multipoint LOD score of 3.0. These results support the identification of a locus on chromosome 16p12.1–16q12.2 responsible for an unusual cluster of neurodegenerative phenotypes. This region overlaps with a separate locus on 16q12.1–q12.2 reported in an independent ALS family, indicating that this region may harbour a second major locus for FTD-ALS.Carol Dobson-Stone, Agnes A. Luty, Elizabeth M. Thompson, Peter Blumbergs, William S. Brooks, Cathy L. Short, Colin D. Field, Peter K. Panegyres, Jane Hecker, Jennifer A. Solski, Ian P. Blair, Janice M. Fullerton, Glenda M. Halliday, Peter R. Schofield, John B. J. Kwo
    corecore