40 research outputs found
Envelopes of nonlinear geometry
A general framework for comparing objects commonly used to represent nonlinear geometry with simpler, related objects, most notably their control polygon, is provided. The framework enables the efficient computation of bounds on the distance between the nonlinear geometry and the simpler objects and the computation of envelopes of nonlinear geometry. The framework is used to compute envelopes for univariate splines, the four point subdivision scheme, tensor product polynomials and bivariate Bernstein polynomials. The envelopes are used to approximate solutions to continuously constrained optimization problems
Smooth Paths In A Polygonal Channel
We show how to efficiently smooth a polygon with an approximating spline that stays to one side of the polygon. We also show how to find a smooth spline path between two polygons that form a channel. Problems of this type arise in many physical motion planning tasks where not only forbidden regions have to be avoided but also a smooth traversal of the motion path is required. Both algorithms are based on a new tight and efficiently computable bound on the distance of a spline from its control polygon and employ only standard linear and quadratic programming techniques