19 research outputs found

    Potent inhibition of local and disseminated tumor growth in immunocompetent mouse models by a bispecific antibody construct specific for Murine CD3

    No full text
    Bispecific single-chain antibody constructs specific for human CD3 have been extensively studied for antitumor activity in human xenograft models using severe combined immunodeficient mice supplemented with human T cells. High efficacy at low effector-to- target ratios, independence of T cell costimuli and a potent activation of previously unstimulated polyclonal T cells were identified as hallmarks of this class of bi- specific antibodies. Here we studied a bispecific single- chain antibody construct (referred to as ‘bispecific T cell engager’, BiTE) in an immunocompetent mouse model. This was possible by the use of a murine CD3-specific BiTE, and a syngeneic melanoma cell line (B16F10) expressing the human Ep-CAM target. The murine CD3-specific BiTE, called 2C11x4-7 prevented in a dose- dependent fashion the outgrowth of subcutaneously growing B16/Ep-CAM tumors with daily i.v. injections of 5 or 50ug BiTE which was most effective. Treatment with 2C11x4-7 was effective even when it was started 10 days after tumor cell inoculation but delayed treat- ments showed a reduction in the number of cured ani- mals. 2C11x4-7 was also highly active in a lung tumor colony model. When treatment was started on the day of intravenous tumor cell injection, seven out of eight animals stayed free of lung tumors, and three out of eight animals when treatment was started on day 5. Our study shows that BiTEs also have a high antitumor activity in immunocompetent mice and that there is no obvious need for costimulation of T cells by secondary agents

    T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct1

    No full text
    We have recently demonstrated that a recombinant single-chain bispecific Ab construct, bscCD19xCD3, in vitro induces rapid B lymphoma-directed cytotoxicity at picomolar concentrations with unstimulated peripheral T cells. In this study, we show that treatment of nonobese diabetic SCID mice with submicrogram doses of bscCD19xCD3 could prevent growth of s.c. human B lymphoma xenografts and essentially cured animals when given at an early tumor stage. The effect was dose dependent, dependent on E:T ratio and the time between tumor inoculation and administration of bscCD19xCD3. No therapeutic effect was seen in the presence of human lymphocytes alone, a vehicle control, or with a bispecific single-chain construct of identical T cell-binding activity but different target specificity. In a leukemic nonobese diabetic SCID mouse model, treatment with bscCD19xCD3 prolonged survival of mice in a dose-dependent fashion. The human lymphocytes used as effector cells in both animal models did not express detectable T cell activation markers at the time of coinoculation with tumor cells. The bispecific Ab therefore showed an in vivo activity comparable to that observed in cell culture with respect to high potency and T cell costimulus independence. These properties make bscCD19xCD3 superior to previously investigated CD19 bispecific Ab-based therapies

    Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct

    No full text
    Bispecific T-cell engager (BiTE) are a class of bispecific single-chain antibodies that can very effectively redirect cytotoxic T cells for killing of tumor target cells. Here, we have assessed the in vivo efficacy of one representative, called bscEp-CAMxCD3, with specificity for tumors overexpressing epithelial cell adhesion molecule (Ep-CAM) in human xenograft models. Cells of the human colon carcinoma line SW480 were mixed at a 1:1 ratio with unstimulated human peripheral mononuclear cells, s.c. injected in nonobese diabetes/severe combined immunodeficiency (NOD/SCID) mice, and animals were treated with bscEp-CAMxCD3. Five daily i.v. injections of as little as 100 ng per mouse of bscEp-CAMxCD3 completely prevented tumor outgrowth when treatment was started at the day of tumor cell inoculation. BscEp-CAMxCD3 was also efficacious when administered up to 8 days after xenograft injection. Established tumors could be eradicated in all animals by five 10 microg doses given between days 8 and 12 after tumor cell inoculation. To test the efficacy of bscEp-CAMxCD3 in a more physiologic model, pieces of primary metastatic tumor tissue from ovarian cancer patients were implanted in NOD/SCID mice. Partial tumor engraftment and growth was observed with four of six patient samples. Treatment of established tumors with daily 5 microg doses led to a significant reduction and, in some cases, eradication of human tumor tissue. These effects obviously relied on the tumor-resident T cells reactivated by bscEp-CAMxCD3. Our data show that the class of single-chain bispecific antibodies has very high antitumor efficacy in vivo and can use previously unstimulated T cells at low effector-to-target ratios

    MT110: A novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors

    No full text
    We have developed a novel single-chain Ep-CAM-/CD3-bispecific single-chain antibody construct designated MT110. MT110 redirected unstimulated human peripheral T cells to induce the specific lysis of every Ep-CAM-expressing tumor cell line tested. MT110 induced a costimulation independent polyclonal activation of CD4- and CD8-positive T cells as seen by de novo expression of CD69 and CD25, and secretion of interferon gamma, tumor necrosis factor alpha, and interleukins 2, 4 and 10. CD8-positive T cells made the major contribution to redirected tumor cell lysis by MT110. With a delay, CD4-positive cells could also contribute presumably as consequence of a dramatic upregulation of granzyme B expression. MT110 was highly efficacious in a NOD/SCID mouse model with subcutaneously growing SW480 human colon cancer cells. Five daily doses of 1 μg MT110 on days 0–4 completely prevented tumor outgrowth in all mice treated. The bispecific antibody construct also led to a durable eradication of established tumors in all mice treated with 1 μg doses of MT110 on days 8–12 after tumor inoculation. Finally, MT110 could eradicate patient-derived metastatic ovarian cancer tissue growing under the skin of NOD/SCID mice. MT110 appears as an attractive bispecific antibody candidate for treatment of human Ep-CAM-overexpressing carcinomas
    corecore