84 research outputs found

    Cyclotron emission, absorption, and the two faces of X-ray pulsar A 0535+262

    Get PDF
    Deep NuSTAR observation of X-ray pulsar A 0535+262, performed at a very low luminosity of ∼7×1034\sim7\times10^{34} erg s−1^{-1}, revealed the presence of two spectral components. We argue that the high-energy component is associated with cyclotron emission from recombination of electrons collisionally excited to the upper Landau levels. The cyclotron line energy of Ecyc=47.7±0.8E_{\rm cyc}=47.7\pm0.8 keV was measured at the luminosity of almost an order of magnitude lower than what was achieved before. The data firmly exclude a positive correlation of the cyclotron energy with the mass accretion rate in this source.Comment: 5 pages, 3 figures, accepted by MNRAS Letter

    The X-ray properties of Be/X-ray pulsars in quiescence

    Full text link
    Observations of accreting neutron stars (NS) with strong magnetic fields can be used not only for studying the accretion flow interaction with NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (i) the interaction of a rotating neutron star (magnetosphere) with the in-falling matter at different accretion rates, and (ii) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: i) relatively bright objects with a luminosity around ~10^34 erg/s and (hard) power-law spectra, and ii) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group i) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the in-falling matter with the neutron star magnetic field and those describing heating and cooling in accreting NSs.Comment: 18 pages, 4 figures, 3 tables, accepted by MNRA

    Luminosity dependence of the cyclotron line and evidence for the accretion regime transition in V 0332+53

    Get PDF
    We report on the analysis of NuSTAR observations of the Be-transient X-ray pulsar V 0332+53 during the giant outburst in 2015 and another minor outburst in 2016. We confirm the cyclotron-line energy-luminosity correlation previously reported in the source and the line energy decrease during the giant outburst. Based on 2016 observations, we find that a year later the line energy has increased again essentially reaching the pre-outburst values. We discuss this behaviour and conclude that it is likely caused by a change of the emission region geometry rather than previously suggested accretion-induced decay of the neutron stars magnetic field. At lower luminosities, we find for the first time a hint of departure from the anticorrelation of line energy with flux, which we interpret as a transition from super- to sub-critical accretion associated with the disappearance of the accretion column. Finally, we confirm and briefly discuss the orbital modulation observed in the outburst light curve of the source.Comment: added journal reference&doi for proper indexin

    Dramatic spectral transition of X-ray pulsar GX 304-1 in low luminous state

    Full text link
    We report on the discovery of a dramatic change in the energy spectrum of the X-ray pulsar GX 304-1 appearing at low luminosity. Particularly, we found that the cutoff power-law spectrum typical for accreting pulsars, including GX 304-1 at higher luminosities of LX∼1036−1037L_{\rm X}\sim 10^{36} - 10^{37} erg s−1^{-1}, transformed at lower luminosity of LX∼1034L_{\rm X}\sim 10^{34} erg s−1^{-1} to a two-component spectrum peaking around 5 and 40 keV. We suggest that the observed transition corresponds to a change of the dominant mechanism responsible for the deceleration of the accretion flow. We argue that the accretion flow energy at low accretion rates is released in the atmosphere of the neutron star, and the low-energy component in the source spectrum corresponds to the thermal emission of the optically thick, heated atmospheric layers. The most plausible explanations for the high-energy component are either the cyclotron emission reprocessed by the magnetic Compton scattering or the thermal radiation of deep atmospheric layers partly Comptonized in the overheated upper layers. Alternative scenarios are also discussed.Comment: 5 pages, 2 figures, accepted by MNRAS Letter

    Studying temporal variability of GRS1739-278 during the 2014 outburst

    Get PDF
    We report a discovery of low-frequency quasi periodic oscillation at 0.3-0.7 Hz in the power spectra of the accreting black hole GRS1739-278 in the hard-intermediate state during its 2014 outburst based on the NuSTAR{\it NuSTAR} and Swift/XRT data. The QPO frequency strongly evolved with the source flux during the NuSTAR observation. The source spectrum became softer with rising QPO frequency and simultaneous increasing of the power-law index and decreasing of the cut-off energy. In the power spectrum, a prominent harmonic is clearly seen together with the main QPO peak. The fluxes in the soft and the hard X-ray bands are coherent, however, the coherence drops for the energy bands separated by larger gaps. The phase-lags are generally positive (hard) in the 0.1-3 Hz frequency range, and negative below 0.1 Hz. The accretion disc inner radius estimated with the relativistic reflection spectral model appears to be Rin<7.3RgR_{\rm in} < 7.3 R_{\rm g}. In the framework of the relativistic precession model, in order to satisfy the constraints from the observed QPO frequency and the accretion disc truncation radius, a massive black hole with MBH≈100M_{\rm BH} \approx 100M⊙_\odot is required.Comment: 15 pages, 12 figures; accepted for publication in MNRA
    • …
    corecore