1 research outputs found

    Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells

    Get PDF
    Efficiency, stability, and cost-effectiveness are the prime challenges in research of materials for solar cells. Technologically as well as scientifically, attention gained by dye-sensitized solar cells (DSSCs) stems from their low material and fabrication costs as well as high efficiency projections. The aim of this study is to explore the carbon nanotubes (CNTs) based counter electrode (CE) materials for DSSCs and to reconnoiter the suitable alternative materials in place of noble metals such as Platinum (Pt), and Gold (Au).. Various classes of CE materials based on CNTs including pure single walled, double walled, and multiwalled CNTs, doped CNTs and their hybrid composites with various polymers, and transition metal compounds are discussed comprehensively in light of the research work started since the inspection of DSSCs and CNTs.The properties associated with such materials, including surface morphology, structural determination, thermal stability, and electrochemical activity, are also thoroughly analyzed and compared. This work provides a thorough insight into the possibility of exploiting CNTs as alternative CE materials. In addition to the above, this study also includes the working and brief overview of materials for other components of DSSCs such as photoanode, electrolyte, and sensitizer.
    corecore