5 research outputs found

    Quantifying the direct impacts and risks of large urban gullies in the Democratic Republic of Congo

    Full text link
    peer reviewedLarge urban gullies (UGs) cause major infrastructural damages and often claim casualties in many tropical cities of the Global South. Nonetheless, our insight into this new type of geo-hydrological hazard remains limited to some case studies and the overall impacts remain poorly quantified. Here, we aim to bridge this gap by making a first assessment of the number of persons affected by urban gullies at the scale of the Democratic Republic of Congo (DRC). We used Google Earth imagery in combination with local news sources and earlier research to identify 25 cities in DRC where UG occur at a significant scale (at least ten UGs). This list is likely exhaustive. Next, for each of these cities, we used Google Earth imagery and other high resolution satellite images to map all visible UG, evaluate their expansion rate and inventorize detectable damages to houses and roads. In total, >2,000 UGs were mapped across the 25 affected cities. Overall, the problem of UGs in DRC is especially acute in the cities of Kinshasa, Mbujimayi, Kikwit, Tshikapa and Kananga. Over 90% of these gullies were active during the observation period (typically from 2002 to 2020). Next, we assessed the total number of persons that are directly affected, as well as the number of persons currently at risk. Using available high resolution population density data and taking into account the current position of urban gullies, we estimate that around 68,700 people were directly displaced due the formation and expansion of UGs over the last 15 years. This corresponds to an average of ca. 4,300 persons per year. By considering the population that lives in the direct vicinity (<100 m) of an UG, we estimate that around 1.3 million people in D.R. Congo are currently at risk and/or experience significant impacts because of UGs (e.g. reduced land value, problems with trafficability, stress). This number has doubled over the past 10 years (2010-2020) and will likely continue to increase as a result of urban expansion and climate change. Overall, this research shows that urban gullying is a very serious problem in the Democratic Republic of Congo, but likely also in many other countries of the Global South. More research is needed to better understand this processes and, ultimately, to prevent and mitigate its impacts. The results and the database of this study provide an important step towards this

    Assessing urban gully occurrence at the scale of Africa

    Full text link
    peer reviewedThe rapid and typically uncontrolled growth of many African cities leads to a plethora of problems and challenges. One of these is the formation and expansion of large urban gullies (UGs) in many (sub)tropical cities. UGs typically lead to the destruction of houses and other infrastructures, displace large numbers of people and often claim casualties. As the formation of such gullies is strongly linked to land use and rainfall intensity, the problems associated with UGs are likely to aggravate in the near future as a result of continued urban expansion and climate change. However, this newly emerging geo-hydrological hazard hitherto received very little research attention. Several studies report on the occurrence and impacts of UGs. Yet, they remain limited to specific local case studies. A clear understanding of the patterns, impacts and driving factors of UGs at larger scales is currently lacking. To address this gap, we aim to better understand the spatial patterns and UG occurrence at the scale of Africa.In order to achieve this, we are documenting cases of UG occurrence across Africa through the visual analysis of very high spatial resolution satellite imagery. This mapping already allowed us to identify more than 3,500 UGs in 11 countries (mainly across D.R. Congo, Angola, Republic of the Congo, Nigeria and Mozambique). Using on this database, we develop a logistic regression model that accurately simulates the likelihood that UGs occur within (peri-)urban areas across Africa. Our preliminary results show that a combination of rainfall characteristics, topography, soil type and variables describing the land use/urban context can already robustly explain why certain cities are extremely susceptible to the problem and others not. Overall, our dataset and model are first crucial steps to better understand the current and future risks of UGs across Africa

    Effectiveness of measures aiming to stabilize urban gullies in tropical cities: Results from field surveys across D.R. Congo

    Full text link
    peer reviewedUrban gullies are a rapidly growing concern in many tropical cities of the Global South. Various measures are already implemented for their stabilization. However, an overview of these measures and their overall effectiveness is currently lacking. We aim at addressing this gap by documenting existing initiatives to stabilize urban gullies in D.R. Congo and assessing their overall effectiveness. To this end we conducted extensive field campaigns in Kinshasa, Kikwit and Bukavu and combined our terrain observations with data on gully expansion rates (derived from series of satellite imagery). In total, we characterized present and past stabilization initiatives for 398 urban gullies. For 69 of these gullies, the effect of a specific measure on gully expansion rates could be estimated. Results show that for the large majority of gullies, various measures have been implemented. Yet, these are mainly ad-hoc measures installed by the affected population. More structural measures based on larger engineering works were observed for only 20–30% of gullies. The huge efforts invested in the installation of measures strongly contrast with their overall low impact. Among all strategies, only the deviation of runoff resulted in significantly lower expansion rates after installation. The numerous initiatives that rely on the sparse means available seem to have limited effects. This does not imply, however, that they are completely ineffective and should be abandoned. Based on our findings, we formulate recommendations for further research on how to effectively prevent and stabilize urban gullies, taking into account the difficult environmental and socio-economic context

    Understanding the effectiveness of measures aiming to stabilize urban gullies in Congolese cities: a systematic analysis based on field surveys

    No full text
    Many cities of the DR Congo are strongly affected by urban mega gullies. There are currently hundreds of such gullies in Kinshasa, Kikwit and Bukavu, representing a cumulative length of >200 km. Many of these gullies (typically tens of meters wide and deep) continue to expand, causing major damage to houses and other infrastructure and often claiming human casualties. To mitigate these impacts, numerous measures are being implemented. The type and scale of these measures varies widely: from large structural measures like retention ponds to local initiatives of stabilizing gully heads with waste material. Nonetheless, earlier work indicates that an estimated 50% of the existing urban gullies continue to expand, despite the implementation of such measures. As such, we currently have very limited insight into the effectiveness of these measures and the overall best strategies to prevent and mitigate urban gullies. One reason for this is that most initiatives to stabilize urban gullies happen on a rather isolated basis and are rarely evaluated afterwards. This work aims to improve our understanding of this issue by constructing a large inventory of measures implemented to stabilize urban gullies in three cities of Kinshasa, Kikwit and Bukavu and statistically confronting these measures with observed vegetation recovery and long-term gully expansion rates (derived from high-resolution imagery over a period of >14 years). Our preliminary results (based on a dataset of > 900 urban gullies) shows that the most commonly applied measures are revegetation and reinforcement of gully heads with sandbags or household waste material (implemented in around 65% of the cases). Retention ponds in streets and infiltration pits on house parcels are also frequently implemented (around 25% of the cases). Overall, techniques relying on vegetation are used relatively more frequently in regions with clayey soil, while techniques involving digging (e.g. infiltration pits) and topographic remodeling (e.g. gully reshaping by creation of terraces) are used mainly in sandy or sandy-clay areas. Surprisingly, small-scale local initiatives, such as stabilizing gully heads with household waste, often appear to have a higher effectivity than some large-scale civil engineering initiatives. However, such small-scale initiatives can come with important additional impacts (e.g. sanitation concerns). More research is needed to confirm these findings. Furthermore, the stability of gullies seems to be strongly linked to the degree of vegetation cover near the gully head. Nonetheless, it is not always clear if vegetation is the cause or the result of this stability. Overall, this study provides one of the first large scale assessments of the effectiveness of gully control measures in urban tropical environments. With this study, we hope to contribute to a better prevention and mitigation of this problem that affects many cities of the tropical Global South

    Quantifying the impacts of urban gullying at the scale of the Democratic Republic of Congo

    No full text
    Urban gullies cause major infrastructural damages and often claim casualties in many tropical cities of the Global South. Nonetheless, our understanding of this hazard currently remains limited to some case studies, while the impacts at larger scales remain poorly quantified. Here, we aim to bridge this gap by making a first assessment of the number of persons and buildings affected by urban gullies at the scale of the Democratic Republic of Congo (DRC). We used Google Earth imagery in combination with local news sources and earlier research to identify 25 cities in DRC where urban gullies occur at a significant scale (at least ten urban gullies). This list is likely exhaustive. Next, for each of these cities, we used Google Earth and other high resolution images to map all visible urban gullies, evaluate their expansion rate and inventorize detectable damages to houses and roads. In total, more than two thousand urban gullies were mapped across the 25 affected cities. Overall, the problem of urban gullies in DRC is especially acute in the cities of Kinshasa, Mbujimayi, Tshikapa, Kananga, Kabinda, and Kikwit. Over 80% of these gullies were active during the observation period (typically from 2002 to 2020). We identified 4257 houses and 998 roads that were destroyed because of the formation and expansion of urban gullies. Nonetheless, the actual impacts are likely much larger since the limited amount of imagery available does not allow quantifying all impacts. For example, in most cases, a large urban gully was already present on the earliest image available. We also made an estimate of the total number of persons that are directly affected, as well as the number of persons currently at risk. Using high resolution estimates of population density and taking into account the current position of urban gullies, we estimate that a total of 133000 people have already lost their house due to formation and expansion of urban gullies. Given that these gullies are typically less than 30-years old, we estimate that on average, at least 4000 people/year lose their house as a result of urban gullies in DRC. This may still be an underestimation. By considering the population that lives in the direct vicinity (<100 m) of an urban gully, we estimate that around 1.2 million people in D.R. Congo are currently at risk and/or experience significant impacts because of urban gullies (e.g. reduced land value, problems with trafficability, stress). An estimated 449000 persons live less than 100 m away from a gully head (which is typically the most active part of the gully) and are therefore likely at high risk to be significantly affected by urban gullies in the coming years. Overall, this research shows that urban gullying is a very serious problem in the DRC, but likely also in many other tropical countries. More research is needed to better understand this processes and, ultimately, to prevent and mitigate its impacts. The results and the database of this study provide an important step towards this
    corecore