1,897 research outputs found
Carbohydrate intake and cardiometabolic risk factors in high BMI African American children.
The aim of this study was to evaluate the relationship between intakes of subgroups of energy-providing carbohydrate, and markers of cardiometabolic risk factors in high BMI African American (AA) children.A cross sectional analysis was performed on data from a sample of 9-11 year old children (n = 95) with BMI greater than the 85th percentile. Fasting hematological and biochemical values for selected markers of cardiometabolic risk factors were related to intakes of carbohydrates and sugars.After adjusting for gender, pubertal stage and waist circumference, multivariate regression analysis showed that higher intakes of carbohydrate (with fat and protein held constant) were associated with higher plasma concentrations of triglycerides (TG), VLDL-C, IDL-C, and worse insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR). After dividing carbohydrate into non-sugar versus sugar fractions, sugars were significantly related to higher TG, VLDL-C, IDL-C, lower adipocyte fatty acid insulin sensitivity (ISI-FFA), and was closely associated with increased HOMA-IR. Similar trends were observed for sugars classified as added sugars, and for sugars included in beverages. Further dividing sugar according to the food group from which it was consumed showed that consuming more sugar from the candy/soda food group was highly significantly associated with increased TG, VLDL-C, IDL-C and closely associated with increased HOMA-IR. Sugars consumed in all fruit-containing foods were significantly associated with lower ISI-FFA. Sugars consumed as fruit beverages was significantly associated with VLDL-C, IDL-C and ISI-FFA whereas sugars consumed as fresh, dried and preserved fruits did not show significant associations with these markers.Sugars consumed from in all dairy foods were significantly associated with higher TG, VLDL-C and IDL-C, and with significantly lower HDL-C and ISI-FFA. These effects were associated with sugars consumed in sweetened dairy products, but not with sugars consumed in unsweetened dairy products. This analysis suggests that increases in carbohydrate energy, especially in the form of sugar, may be detrimental to cardiometabolic health in high BMI children
Macronutrient intakes and cardio metabolic risk factors in high BMI African American children
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the relationship between intakes of energy-providing macronutrients, and markers of cardio metabolic risk factors in high BMI African American (AA) children.</p> <p>Methods</p> <p>A cross sectional analysis of a sample of 9-11 year old children (n = 80) with BMI greater then the 85<sup>th </sup>percentile. Fasting hematological and biochemical measurements, and blood pressure were measured as selected markers of cardio metabolic risk factors and their relationships to dietary intakes determined.</p> <p>Results</p> <p>After adjusting for gender, pubertal stage and waist circumference (WC), multivariate regression analysis showed that higher total energy intakes (when unadjusted for source of energy) were associated with higher plasma concentrations of intermediate density lipoprotein cholesterol (IDL-C) and very low density lipoprotein cholesterol (VLDL-C). Higher intakes of carbohydrate energy (fat and protein held constant) were associated with higher IDL-C, VLDL-C, triglycerides (TG) and homeostasis model assessment of insulin resistance (HOMA-IR). Higher intakes of fat (carbohydrate and protein held constant), however, were associated with lower IDL-C; and higher protein intakes (fat and carbohydrate held constant) were associated with lower HOMA-IR.</p> <p>Conclusion</p> <p>The specific macronutrients that contribute energy are significantly associated with a wide range of cardio metabolic risk factors in high BMI AA children. Increases in carbohydrate energy were associated with undesirable effects including increases in several classes of plasma lipids and HOMA-IR. Increases in protein energy were associated with the desirable effect of reduced HOMA-IR, and fat energy intakes were associated with the desirable effect of reduced IDL-C. This analysis suggests that the effect of increased energy on risk of developing cardio metabolic risk factors is influenced by the source of that energy.</p
Nuclear Magnetic Resonance and Hyperfine Structure
Contains reports on four research projects
How well-proportioned are lens and prism spaces?
The CMB anisotropies in spherical 3-spaces with a non-trivial topology are
analysed with a focus on lens and prism shaped fundamental cells. The
conjecture is tested that well proportioned spaces lead to a suppression of
large-scale anisotropies according to the observed cosmic microwave background
(CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly
proportioned. However, there are inhomogeneous lens spaces whose shape of the
Voronoi domain depends on the position of the observer within the manifold.
Such manifolds possess no fixed measure of well-proportioned and allow a
predestined test of the well-proportioned conjecture. Topologies having the
same Voronoi domain are shown to possess distinct CMB statistics which thus
provide a counter-example to the well-proportioned conjecture. The CMB
properties are analysed in terms of cyclic subgroups Z_p, and new point of view
for the superior behaviour of the Poincar\'e dodecahedron is found
HST grism spectroscopy of z ∼3 massive quiescent galaxies: Approaching the metamorphosis
Tracing the emergence of the massive quiescent galaxy (QG) population requires the build-up of reliable quenched samples by distinguishing these systems from red, dusty star-forming sources. We present Hubble Space Telescope WFC3/G141 grism spectra of ten quiescent galaxy candidates selected at 2.5 < z < 3.5 in the COSMOS field. Spectroscopic confirmation for the whole sample is obtained within one to three orbits through the detection of strong spectral breaks and Balmer absorption lines. When their spectra are combined with optical to near-infrared photometry, star-forming solutions are formally rejected for the entire sample. Broad spectral indices are consistent with the presence of young A-type stars, which indicates that the last major episode of star formation has taken place no earlier than ∼300-800 Myr prior to observation. This confirms clues from their post-starburst UVJ colors. Marginalising over three different slopes of the dust attenuation curve, we obtain young mass-weighted ages and an average peak star formation rate (SFR) of ∼103 M yr-1 at zformation ∼ 3.5. Although mid- and far-IR data are too shallow to determine the obscured SFR on a galaxy-by-galaxy basis, the mean stacked emission from 3 GHz data constrains the level of residual-obscured SFR to be globally below 50 M yr-1, three times below the scatter of the coeval main sequence. Alternatively, the very same radio detection suggests a widespread radio-mode feedback by active galactic nuclei (AGN) four times stronger than in z ∼ 1.8 massive QGs. This is accompanied by a 30% fraction of X-ray luminous AGN with a black hole accretion rate per unit SFR enhanced by a factor of ∼30 with respect to similarly massive QGs at lower redshift. The average compact, high Sérsic index morphologies of the galaxies in this sample, coupled with their young mass-weighted ages, suggest that the mechanisms responsible for the development of a spheroidal component might be concomitant with (or preceding) those causing their quenching
Magnet Laboratory Research
Contains research objectives and reports on three research projects
CMB Anisotropy of the Poincare Dodecahedron
We analyse the anisotropy of the cosmic microwave background (CMB) for the
Poincare dodecahedron which is an example for a multi-connected spherical
universe. We compare the temperature correlation function and the angular power
spectrum for the Poincare dodecahedral universe with the first-year WMAP data
and find that this multi-connected universe can explain the surprisingly low
CMB anisotropy on large scales found by WMAP provided that the total energy
density parameter Omega_tot is in the range 1.016...1.020. The ensemble average
over the primordial perturbations is assumed to be the scale-invariant
Harrison-Zel'dovich spectrum. The circles-in-the-sky signature is studied and
it is found that the signal of the six pairs of matched circles could be missed
by current analyses of CMB sky maps
Cosmic Topology of Prism Double-Action Manifolds
The cosmic microwave background (CMB) anisotropies in spherical 3-spaces with
a non-trivial topology are studied. This paper discusses the special class of
the so-called double-action manifolds, which are for the first time analysed
with respect to their CMB anisotropies. The CMB anisotropies are computed for
all prism double-action manifolds generated by a binary dihedral and a cyclic
group with a group order of up to 180 leading to 33 different topologies.
Several spaces are found which show a suppression of the CMB anisotropies on
large angular distances as it is found on the real CMB sky. It turns out that
two of these spaces possess Dirichlet domains which are not very far from
highly symmetric polyhedra like Platonic or Archimedean ones
Nuclear Magnetic Resonance and Hyperfine Structure
Contains reports on three research projects
- …