1,063 research outputs found

    Non-geometric Kaluza-Klein monopoles and magnetic duals of M-theory R-flux backgrounds

    Full text link
    We introduce a magnetic analogue of the seven-dimensional nonassociative octonionic R-flux algebra that describes the phase space of M2-branes in four-dimensional locally non-geometric M-theory backgrounds. We show that these two algebras are related by a Spin(7) automorphism of the 3-algebra that provides a covariant description of the eight-dimensional M-theory phase space. We argue that this algebra also underlies the phase space of electrons probing a smeared magnetic monopole in quantum gravity by showing that upon appropriate contractions, the algebra reduces to the noncommutative algebra of a spin foam model of three-dimensional quantum gravity, or to the nonassociative algebra of electrons in a background of uniform magnetic charge. We realise this set-up in M-theory as M-waves probing a delocalised Kaluza-Klein monopole, and show that this system also has a seven-dimensional phase space. We suggest that the smeared Kaluza-Klein monopole is non-geometric because it cannot be described by a local metric. This is the magnetic analogue of the local non-geometry of the R-flux background and arises because the smeared Kaluza-Klein monopole is described by a U(1)-gerbe rather than a U(1)-fibration.Comment: 19 pages, 2 figures; v2: dimensionful factors corrected throughout, exposition improved; Final version to be published in JHE

    Thermodynamics of Asymptotically Flat Charged Black Holes in Third Order Lovelock Gravity

    Full text link
    We present a new class of asymptotically flat charge static solutions in third order Lovelock gravity. These solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. We find that the uncharged asymptotically flat solutions can present black hole with two inner and outer horizons. This kind of solution does not exist in Einstein or Gauss-Bonnet gravity, and it is a special effect in third order Lovelock gravity. We compute temperature, entropy, charge, electric potential and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the determinant of Hessian matrix of the mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that there exists only an intermediate stable phase.Comment: 16 pages, two figures, a few references, and one sections added. Some properties of these new solutions which are different from Gauss-Bonnet gravity have been highlighte

    NUT-Charged Black Holes in Gauss-Bonnet Gravity

    Full text link
    We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in dd dimensions. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α\alpha goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield non-extremal NUT solutions to Einstein gravity having a curvature singularity at r=Nr=N in the limit % \alpha \to 0. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions with non-trivial fibration only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.Comment: 20 pages, referrence added, a few typos correcte

    Taub-NUT/Bolt Black Holes in Gauss-Bonnet-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+22k+2 dimensions with a U(1) fibration over a 2k2k-dimensional base space B\mathcal{B}. These solutions depend on two extra parameters, other than the mass and the NUT charge, which are the electric charge qq and the electric potential at infinity VV. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B\mathcal{B}. We investigate the existence of Taub-NUT/bolt solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=Nr=N and the fact that the horizon at r=Nr=N should be the outer horizon of the black hole. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.Comment: 23 pages, 3 figures, typos fixed, a few references adde

    Topological Black Holes in Lovelock-Born-Infeld Gravity

    Full text link
    In this paper, we present topological black holes of third order Lovelock gravity in the presence of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the finite action and conserved quantities of these class of solutions by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the charge, and compute temperature, angular velocities, and electric potential and show that these thermodynamic quantities coincide with their values which are computed through the use of geometry. Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on the stability of the black branes, and they are stable in the whole phase space.Comment: 14 page

    Poor People\u27s Beliefs and the Dynamics of Clientelism

    Get PDF
    Why do some poor people engage in clientelism whereas others do not? Why does clientelism sometimes take traditional forms and sometimes more instrumental forms? We propose a formal model of clientelism that addresses these questions focusing primarily on the citizen’s perspective. Citizens choose between supporting broad-based redistribution or engaging in clientelism. Introducing insights from social psychology, we study the interactions between citizen beliefs and values, and their political choices. Clientelism, political inefficacy, and inequality legitimation beliefs reinforce each other leading to multiple equilibria. One of these resembles traditional clientelism, with disempowered clients that legitimize social inequalities. Community connectivity breaks this reinforcement mechanism and leads to another equilibrium where clientelism takes a modern, instrumental, form. The model delivers insights on the role of citizen beliefs for their bargaining power as well as for the persistence and transformation of clientelism. We illustrate the key mechanisms with ethnographic literature on the topic
    • …
    corecore