1,096 research outputs found
Conifer-angiosperm interactions: Physiological ecology and life history.
Worldwide, conifers are most successful on sites subject to chronic stresses that limit productivity (low temperatures, nutrient poverty, poor drainage). They are poorly represented in the lowland tropics but are often important in Montane tropical forests. Here I explore some functional differences between leaf and xylem traits of conifer and angiosperm trees and their implications for the distributions of these two groups on environmental gradients. Analysis of a global data set shows that compared with angiosperm trees, conifers tend to have longer-lived leaves with greater mass per area (LMA) and lower mass-based photosynthetic capacity. As leaf life span is thought to be the main determinant of nutrient retention time, the prominence of conifers on infertile soils worldwide is at least partly attributable to thrifty use of nutrients through long leaf life spans. Furthermore, because leaf life span correlates with litter decomposition rates, these leaf trait differences could potentially influence the competitive balance between conifers and angiosperms via positive feedbacks on nutrient cycling. Although scaling of leaf life span with LMA is similar in the two groups, angiosperms achieve slightly longer leaf life spans than conifers of similar photosynthetic capacity. This might be caused by less-efficient leaf display in conifers, resulting in the useful life span of leaves being curtailed by self-shading. Representatives of both lineages have narrower conduits in the temperate zone than in the lowland tropics/subtropics, reflecting selection for resistance to freeze-thaw embolism in cold climates. However, conduit diameters of conifers and angiosperm trees differ more in tropical and subtropical forests than at higher latitudes. This probably reflects mechanical constraints on maximum tracheid diameters in the homoxylous wood of conifers, preventing this group from producing the highly conductive wood typical of fast-growing angiosperm pioneers in tropical forests. This pattern might explain why coexistence of conifers and angiosperms is more common in temperate forests and on tropical mountains than in the lowland tropics. Impairment of angiosperm carbon gain by freeze-thaw embolism during cold weather may further narrow performance differences between the two lineages on temperate sites. Differences in canopy residence time probably deserve more attention as a determinant of conifer-angiosperm coexistence in many temperate forests, the longer life span of conifers compensating for infrequent recruitment
Defect Engineering: Graphene Gets Designer Defects
An extended one-dimensional defect that has the potential to act as a
conducting wire has been embedded in another perfect graphene sheet.Comment: 2 pages, 1 figur
Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements
The species-rich arborescent assemblages of humid tropical forests encompass much of the known range of the leaf economics spectrum, often including >20-fold variation in leaf lifespan. This suite of traits underpins a life-history continuum from fast-growing pioneers to slow-growing shade-tolerant species. Less is known about the range of leaf traits in humid temperate forests, and there are conflicting reports about relationships of these traits with the light requirements of temperate evergreen angiosperms. Here I quantify the range of leaf functional traits in a New Zealand temperate evergreen forest, and relationships of these traits with light requirements of juvenile trees and shrubs. Foliage turnover of saplings of 19 evergreen angiosperms growing beneath gaps (12â29% canopy openness) and in understories (1.2â2.9%) was measured over 12 months. Dry mass per area (LMA), dry matter content, thickness, density and nitrogen content (N) of leaves were also measured. Species minimum light requirements were indexed as the 10th percentile of the distribution of saplings in relation to canopy openness. Interspecific variation of leaf lifespan was âŒ6-fold in gaps (0.6 to 3.8 yrs), and âŒ11-fold in the understorey (0.7 to 7.7 yrs). Six small tree and shrub species are effectively leaf-exchangers, with leaf lifespans of c.1 year in gapsâalbeit usually longer in the shade. Interspecific variation in other leaf traits was 2.5 to 4-fold. Lifespans and LMA of both sun and shade leaves were negatively correlated with species light requirements i.e., positively correlated with shade tolerance. However, light environment (gap vs shade) explained about the same amount of variation in LMA as speciesâ identity did. Species light requirements were not significantly correlated with leaf N, dry matter content, density or thicknessâexcept for a marginally significant correlation with dry matter content of shade leaves. Species light requirements were thus less consistently related to leaf structural traits than appears to be the case in humid tropical forests. Whereas the wide interspecific variation in leaf economic traits of tropical rainforest species outweighs plastic response to light availability, temperate evergreen woody angiosperms appear to occupy a narrower range of the leaf economic spectrum. Standardization of the light environments in which LMA is measured is vital in comparative studies of humid temperate forest evergreens, because of countergradient responses of this trait to light, and because of the relative magnitudes of plastic and interspecific variation in LMA in these forests
Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility
Citation: Pendell, D. L., Marsh, T. L., Coble, K. H., Lusk, J. L., & Szmania, S. C. (2015). Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility. Plos One, 10(6), 22. doi:10.1371/journal.pone.0129134This study evaluates the economic consequences of hypothetical foot-and-mouth disease releases from the future National Bio and Agro Defense Facility in Manhattan, Kansas. Using an economic framework that estimates the impacts to agricultural firms and consumers, quantifies costs to non-agricultural activities in the epidemiologically impacted region, and assesses costs of response to the government, we find the distribution of economic impacts to be very significant. Furthermore, agricultural firms and consumers bear most of the impacts followed by the government and the regional non-agricultural firms
Macroclimate and topography interact to influence the abundance of divaricate plants in New Zealand
The abundance of the divaricate growth form in New Zealand has been interpreted as either (a) the response of an isolated flora to cool, dry, Plio-Pleistocene climates; or (b) a defense against large browsing birds (moa) that were hunted to extinction shortly after human arrival during the last millennium. We used patterns of divaricate plant abundance across present-day landscapes to test a novel synthetic hypothesis: that the divaricate form is of most value to plants on fertile soils that attract herbivores, on sites where climatic constraints prevent plants from quickly growing out of the browse zone. This hypothesis predicts that divaricate species should be most abundant on terraces (landforms that are both fertile and frost-prone) in regions that are cold and dry, and should be scarce across all topographic positions in the warmest (largely frost-free) regions. To address our hypothesis, we first tested the influence of topography on frost regimes and nutrient levels by measuring temperatures and soil total C, N, and P at four standard topographic positions at five localities differing widely in macroclimate. We then extracted a dataset of 236 surveys comprising 9,877 relevĂ© plots from the New Zealand National Vegetation Survey databank. We calculated the proportion of arborescent species with a divaricate growth form and the proportion of total arborescentcover contributed by divaricates on each plot; we then fitted linear mixed-effect models predicting these response variables as functions of topographic position and climate. The number of frosts recorded averaged 60 yrâ1 on all topographic positions at the coldest site. Terraces were subject to more frequent and harder frosts than any other topographic position. Topography had no significant influence on total N or C:N, but total P was higher on terraces and in gullies than on faces or ridges. Frost-free period was the dominant influence on both species representation and cover of divaricate plants throughout the country. The effect of topography was also significant, but weaker. The effect of frost-free period was stronger on sites with water deficits than on sites where precipitation exceeded evapotranspiration. Divaricates made their largest contributions on terraces in cold, dry regions; as predicted, they were scarce on all topographic positions on sites with frost-free periods >300 days. Our hypothesis was generally supported, although the effect of topography on divaricate abundance was not as strong as some previous studies led us to expect. Divaricates made their largest contributions to arborescent species richness and cover on sites where climatic restrictions on growth coincide with relatively high nutrient availability. The contemporary distribution of the divaricate form across New Zealand landscapes thus appears to be reasonably well explained by the hypothesized interaction of climate and fertility-mediated browsing, although experiments may provide more conclusive tests of this hypothesis
Rubble Pile Characterization Model
Rubble piles created following the collapse of a building in a combat situation can significantly impact mission accomplishment, particularly in the area of movement and maneuver. Rubble characteristics must be known, for example, in order to predict the ability of a vehicle to override the collateral damage from weapon effects in urban areas. Two types of models are developed: a first-order model and a first-principles-based model. In both models, we assume complete rubblization of the building and develop a rubble profile model using the size and composition of the collapsed structure to predict the rubble volume. In both cases, this profile model includes the size of the footprint area surrounding the original building assuming that the rubble is free to expand horizontally as well as the resulting height of such a rubble pile. Empirical data is now needed to verify the predictive capabilities of these models
Properties of a Novel Ion-Exchange Film
A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions
- âŠ