69 research outputs found

    Randomized algorithms for fully online multiprocessor scheduling with testing

    Full text link
    We contribute the first randomized algorithm that is an integration of arbitrarily many deterministic algorithms for the fully online multiprocessor scheduling with testing problem. When there are two machines, we show that with two component algorithms its expected competitive ratio is already strictly smaller than the best proven deterministic competitive ratio lower bound. Such algorithmic results are rarely seen in the literature. Multiprocessor scheduling is one of the first combinatorial optimization problems that have received numerous studies. Recently, several research groups examined its testing variant, in which each job JjJ_j arrives with an upper bound uju_j on the processing time and a testing operation of length tjt_j; one can choose to execute JjJ_j for uju_j time, or to test JjJ_j for tjt_j time to obtain the exact processing time pjp_j followed by immediately executing the job for pjp_j time. Our target problem is the fully online version, in which the jobs arrive in sequence so that the testing decision needs to be made at the job arrival as well as the designated machine. We propose an expected (φ+3+1)(3.1490)(\sqrt{\varphi + 3} + 1) (\approx 3.1490)-competitive randomized algorithm as a non-uniform probability distribution over arbitrarily many deterministic algorithms, where φ=5+12\varphi = \frac {\sqrt{5} + 1}2 is the Golden ratio. When there are two machines, we show that our randomized algorithm based on two deterministic algorithms is already expected 3φ+3137φ4(2.1839)\frac {3 \varphi + 3 \sqrt{13 - 7\varphi}}4 (\approx 2.1839)-competitive. Besides, we use Yao's principle to prove lower bounds of 1.66821.6682 and 1.65221.6522 on the expected competitive ratio for any randomized algorithm at the presence of at least three machines and only two machines, respectively, and prove a lower bound of 2.21172.2117 on the competitive ratio for any deterministic algorithm when there are only two machines.Comment: 21 pages with 1 plot; an extended abstract to be submitte

    Sexually dimorphic genetic architecture of complex traits in a large-scale F2 cross in pigs

    Get PDF
    BACKGROUND: It is common for humans and model organisms to exhibit sexual dimorphism in a variety of complex traits. However, this phenomenon has rarely been explored in pigs. RESULTS: To investigate the genetic contribution to sexual dimorphism in complex traits in pigs, we conducted a sex-stratified analysis on 213 traits measured in 921 individuals produced by a White Duroc × Erhualian F(2) cross. Of the 213 traits examined, 102 differed significantly between the two sexes (q value <0.05), which indicates that sex is an important factor that influences a broad range of traits in pigs. We compared the estimated heritability of these 213 traits between males and females. In particular, we found that traits related to meat quality and fatty acid composition were significantly different between the two sexes, which shows that genetic factors contribute to variation in sexual dimorphic traits. Next, we performed a genome-wide association study (GWAS) in males and females separately; this approach allowed us to identify 13.6% more significant trait-SNP (single nucleotide polymorphism) associations compared to the number of associations identified in a GWAS that included both males and females. By comparing the allelic effects of SNPs in the two sexes, we identified 43 significant sexually dimorphic SNPs that were associated with 22 traits; 41 of these 43 loci were autosomal. The most significant sexually dimorphic loci were found to be associated with muscle hue angle and Minolta a* values (which are parameters that reflect the redness of meat) and were located between 9.3 and 10.7 Mb on chromosome 6. A nearby gene i.e. NUDT7 that plays an important role in heme synthesis is a strong candidate gene. CONCLUSIONS: This study illustrates that sex is an important factor that influences phenotypic values and modifies the effects of the genetic variants that underlie complex traits in pigs; it also emphasizes the importance of stratifying by sex when performing GWAS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12711-014-0076-2) contains supplementary material, which is available to authorized users

    Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains

    Get PDF
    Phototropin (phot)-mediated signaling initiated by blue light (BL) plays a critical role in optimizing photosynthetic light capture at the plasma membrane (PM) in plants. However, the mechanisms underlying the regulation of phot activity at the PM in response to BL remain largely unclear. In this study, by single-particle tracking and step-wise photobleaching analysis we demonstrated that in the dark phot1-GFP proteins remain in an inactive state and mostly present as a monomer. The phot1-GFP diffusion rate and its dimerization increased in a dose-dependent manner in response to BL. In contrast, BL did not affect the lateral diffusion of kinase-inactive phot1 -GFP, whereas it did enhance its dimerization, suggesting that phot1 dimerization is independent of its phosphorylation. Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) analysis revealed that the interaction between phot1-GFP and AtRem1.3-mCherry was enhanced along with increased time of BL treatment. However, the BL-dependent interaction was not obvious in plants co-expressing phot1 -GFP and AtRem1.3-mCherry, implicating that BL facilitated the translocation of functional phot1-GFP into AtRem1.3-labeled microdomains to activate phot-mediated signaling. Conversely, sterol depletion attenuated phot1-GFP dynamics, dimerization, and phosphorylation. Taken together, these results indicate that membrane microdomains act as an organizing platform essential for proper function of activated phot1 at the PM

    Protective effect of Saussurea involucrata polysaccharide against skin dryness induced by ultraviolet radiation

    Get PDF
    Background: Exposure to ultraviolet B (UVB) radiation can damage the epidermis barrier function and eventually result in skin dryness. At present, little work is being devoted to skin dryness. Searching for active ingredients that can protect the skin against UVB-induced dryness will have scientific significance.Methods:Saussurea involucrata polysaccharide (SIP) has been shown to have significant antioxidant and anti-photodamage effects on the skin following UVB irradiation. To evaluate the effect of SIP on UVB-induced skin dryness ex vivo, SIP-containing hydrogel was applied in a mouse model following exposure to UVB and the levels of histopathological changes, DNA damage, inflammation, keratinocyte differentiation, lipid content were then evaluated. The underlying mechanisms of SIP to protect the cells against UVB induced-dryness were determined in HaCaT cells.Results: SIP was found to lower UVB-induced oxidative stress and DNA damage while increasing keratinocyte differentiation and lipid production. Western blot analysis of UVB-irradiated skin tissue revealed a significant increase in peroxisome proliferator-activated receptor-α (PPAR-α) levels, indicating that the underlying mechanism may be related to PPAR-α signaling pathway activation.Conclusions: By activating the PPAR-α pathway, SIP could alleviate UVB-induced oxidative stress and inhibit the inflammatory response, regulate proliferation and differentiation of keratinocytes, and mitigate lipid synthesis disorder. These findings could provide candidate active ingredients with relatively clear mechanistic actions for the development of skin sunscreen moisturizers

    Gut bacterial species in late trimester of pregnant sows influence the occurrence of stillborn piglet through pro-inflammation response

    Get PDF
    Maternal gut microbiota is an important regulator for the metabolism and immunity of the fetus during pregnancy. Recent studies have indicated that maternal intestinal microbiota is closely linked to the development of fetus and infant health. Some bacterial metabolites are considered to be directly involved in immunoregulation of fetus during pregnancy. However, the detailed mechanisms are largely unknown. In this study, we exploited the potential correlation between the gut microbiota of pregnant sows and the occurrence of stillborn piglets by combining the 16S rRNA gene and metagenomic sequencing data, and fecal metabolome in different cohorts. The results showed that several bacterial species from Bacteroides, potential pathogens, and LPS-producing bacteria exhibited significantly higher abundances in the gut of sows giving birth to stillborn piglets. Especially, Bacteroides fragilis stood out as the key driver in both tested cohorts and showed the most significant association with the occurrence of stillborn piglets in the DN1 cohort. However, several species producing short-chain fatty acids (SCFAs), such as Prevotella copri, Clostridium butyricum and Faecalibacterium prausnitzii were enriched in the gut of normal sows. Functional capacity analysis of gut microbiome revealed that the pathways associated with infectious diseases and immune diseases were enriched in sows giving birth to stillborn piglets. However, energy metabolism had higher abundance in normal sows. Fecal metabolome profiling analysis found that Lysophosphatidylethanolamine and phosphatidylethanolamine which are the main components of cell membrane of Gram-negative bacteria showed significantly higher concentration in stillbirth sows, while SCFAs had higher concentration in normal sows. These metabolites were significantly associated with the stillborn-associated bacterial species including Bacteroides fragilis. Lipopolysaccharide (LPS), IL-1β, IL-6, FABP2, and zonulin had higher concentration in the serum of stillbirth sows, indicating increased intestinal permeability and pro-inflammatory response. The results from this study suggested that certain sow gut bacterial species in late trimester of pregnancy, e.g., an excess abundance of Bacteroides fragilis, produced high concentration of LPS which induced sow pro-inflammatory response and might cause the death of the relatively weak piglets in a farrow. This study provided novel evidences about the effect of maternal gut microbiota on the fetus development and health

    ANALYSIS OF HIGH SPEED HYDROSTATIC BEARING’S PERFORMANCE CONSIDERING THERMAL EFFECT OF LUBRICATION FLUID

    No full text
    To study the influence to high speed hydrostatic bearing’s performance from lubrication fluid characteristics of oil film,the thermal effect of lubricating fluid’s viscosity,density and specific heat capacity is considered,and put forward a method to solve the Navier-Stokes( N-S) equations combined with a custom function program to introduce lubricating fluid relations under thermal effect. Take a fast sliding bearing as example,using this method to calculate and discuss the effect of various factors on the bearing performance,the performance parameters of bearing are compared with the situation of ignoring lubricating fluid features. Results show that the numerical distribution of the oil-film fluid properties have a significant change with the temperature as considering the lubrication fluid characteristics under thermal effect; Viscosity play a critical role on performance parameters of the bearing,while considering thermal effect,the density has a certain lower effect on oil-film maximum pressure,and the specific heat has capacity to influence the maximum temperature and friction power consumption of the shaft neck,so comprehensive consideration of lubrication fluid features is more in line with the actual working condition. The research results have guidance on the study of oil reservoir structure on the influence of fluid properties and the choice of lubricating oil,etc

    NONLIEAR DYNAMIC BEHAVIORS ANALYSIS OF COMPLEX ROTOR-BEARING SYSTEM

    No full text
    Aiming at overcoming the deficiency of available methods for revaling the nonlinear dynamic behaviors of complex rotor-bearing system,a fluid-structure method which combined rotor dynamics with computational fluid dynamics based on dynamic mesh is proposed. This method presented in this paper first developed a rotor-bearing system,then calculated the transient oil field of journal bearing by using a dynamic mesh method for variable flow,thus calculated the shaft center trajectory for a dynamically loaded journal bearing. Finally,this method is validated with nonlinear dynamics analysis of a complex rotorbearing system. The results show that the proposed method can accurately solving the nonlinear dynamics of complex rotor-bearing system
    corecore