22 research outputs found

    Type 3 hypersensitivity in COVID-19 vasculitis

    Get PDF
    Coronavirus Disease 2019 (COVID-19) is an ongoing public health emergency and new knowledge about its immunopathogenic mechanisms is deemed necessary in the attempt to reduce the death burden, globally. For the first time in worldwide literature, we provide scientific evidence that in COVID-19 vasculitis a life-threatening escalation from type 2 T-helper immune response (humoral immunity) to type 3 hypersensitivity (immune complex disease) takes place. The subsequent deposition of immune complexes inside the vascular walls is supposed to induce a severe inflammatory state and a cytokine release syndrome, whose interleukin-6 is the key myokine, from the smooth muscle cells of blood vessels

    Monocyte Distribution Width (MDW) as novel inflammatory marker with prognostic significance in COVID-19 patients

    Get PDF
    Monocyte Distribution Width (MDW), a new cytometric parameter correlating with cytomorphologic changes occurring upon massive monocyte activation, has recently emerged as promising early biomarker of sepsis. Similar to sepsis, monocyte/macrophage subsets are considered key mediators of the life-threatening hyper-inflammatory disorder characterizing severe COVID-19. In this study, we longitudinally analyzed MDW values in a cohort of 87 COVID-19 patients consecutively admitted to our hospital, showing significant correlations between MDW and common inflammatory markers, namely CRP (p < 0.001), fibrinogen (p < 0.001) and ferritin (p < 0.01). Moreover, high MDW values resulted to be prognostically associated with fatal outcome in COVID-19 patients (AUC = 0.76, 95% CI: 0.66\u20130.87, sensitivity 0.75, specificity 0.70, MDW threshold 26.4; RR = 4.91, 95% CI: 1.73\u201313.96; OR = 7.14, 95% CI: 2.06\u201324.71). This pilot study shows that MDW can be useful in the monitoring of COVID-19 patients, as this innovative hematologic biomarker is: (1) easy to obtain, (2) directly related to the activation state of a fundamental inflammatory cell subset (i.e. monocytes, pivotal in both cytokine storm and sepsis immunopathogenesis), (3) well correlated with clinical severity of COVID-19-associated inflammatory disorder, and, in turn, (4) endowed with relevant prognostic significance. Additional studies are needed to define further the clinical impact of MDW testing in the management of COVID-19 patients

    Multiparametric flow cytometry for MRD monitoring in hematologic malignancies: Clinical applications and new challenges

    Get PDF
    In hematologic cancers, Minimal Residual Disease (MRD) monitoring, using either molecular (PCR) or immunophenotypic (MFC) diagnostics, allows the identification of rare cancer cells, readily detectable either in the bone marrow or in the peripheral blood at very low levels, far below the limit of classic microscopy. In this paper, we outlined the state-of-the-art of MFC-based MRD detection in different hematologic settings, highlighting main recommendations and new challenges for using such a method in patients with acute leukemias or chronic hematologic neoplasms. The combination of new molecular technologies with advanced flow cytometry is progressively allowing clinicians to design a personalized therapeutic path, proportionate to the biological aggressiveness of the disease, in particular by using novel immunotherapies, in view of a modern decision-making process, based on precision medicine. Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCRbased techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies-from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL), to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)-providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings

    Neoantigen-specific T-cell immune responses: The paradigm of NPM1-mutated acute myeloid leukemia

    Get PDF
    The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicat-ing persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients

    Overconfidence and active management: An empirical study across Swiss pension plans

    Full text link
    Pension plans in Switzerland favor active management over indexing to implement their strategic asset allocation. Empirical surveys show, however, that their success has been below expectations, as the median performance of Swiss pension plans in domestic and international equities is below market indices even gross of fees. The results of this paper's survey across decisionmakers of Swiss pension plans sheds some light on why active management is still so popular across Swiss pension plans. On average the participants in the sample are prone to the better-than-average-effect. A majority expects their managers and their overall pension plan to outperform the other survey participants in the future. The subjective perceptions of the own skill level relative to the competitors can explain the popularity of active management across Swiss pension plans

    A proof of evidence supporting abnormal immunothrombosis in severe COVID-19: naked megakaryocyte nuclei increase in the bone marrow and lungs of critically ill patients

    No full text
    Coronavirus disease 2019 (COVID-19) is a global public health emergency with many clinical facets, and new knowledge about its pathogenetic mechanisms is deemed necessary; among these, there are certainly coagulation disorders. In the history of medicine, autopsies and tissue sampling have played a fundamental role in order to understand the pathogenesis of emerging diseases, including infectious ones; compared to the past, histopathology can be now expanded by innovative techniques and modern technologies. For the first time in worldwide literature, we provide a detailed postmortem and biopsy report on the marked increase, up to 1 order of magnitude, of naked megakaryocyte nuclei in the bone marrow and lungs from serious COVID-19 patients. Most likely related to high interleukin-6 serum levels stimulating megakaryocytopoiesis, this phenomenon concurs to explain well the pulmonary abnormal immunothrombosis in these critically ill patients, all without molecular or electron microscopy signs of megakaryocyte infection
    corecore