771 research outputs found

    NVV auger spectra from W(100)

    Get PDF
    The NVV Auger spectrum from a clean W(100) surface has been measured in the second derivative, d^2N (E)/dE^2, mode to enhance fine structure. This measurement is compared with spectra generated from both the self‐convolution of the tungsten valence‐band bulk density of states (obtained from a relativistic APW energy band calculation) and a "restricted convolution" in which only transitions involving electrons from the same valence energy are allowed. The restricted convolution for a model of the Auger process in which both N_6VV and N_7VV transitions contribute offers the best match of theory and experiment. No distinct evidence of Auger emission involving the surface resonance present on W(100) is observed. Effects of H_2 and O_2 adsorption on the Auger spectrum of the W(100) surface are reported

    Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures

    Full text link
    The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11% FWHM for the 5.9 keV line of 55^{55}Fe in argon/isobutane mixtures at atmospheric pressure. At higher energies (MeV scale), these measurements are more complicated due to the difficulty in confining the events in the chamber, although there is no fundamental reason why resolutions of 1% FWHM or below could not be reached. There is much motivation to demonstrate experimentally this fact in Xe mixtures due to the possible application of Micromegas readouts to the Double Beta Decay search of 136^{136}Xe, or in other experiments needing calorimetry and topology in the same detector. In this paper, we report on systematic measurements of energy resolution with state-of-the-art Micromegas using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as low as 1.8% FWHM have been obtained, with possible evidence that better resolutions are achievable. Similar measurements in Xe, of which a preliminary result is also shown here, are under progress.Comment: 16 pages, 19 figures, version after referees comments. Accepted for publication in Nuclear Instruments and Methods

    Ergodicity of the LLR method for the Density of States

    Get PDF
    The LLR method is a novel algorithm that enables us to evaluate the density of states in lattice gauge theory. We present our study of the ergodicity properties of the LLR algorithm for the model of Yang-Mills SU(3). We show that the use of the replica exchange method alleviates significantly the topological freeze-out that severely affects other algorithms

    Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    Full text link
    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (fψˉfΓψf\sum_f\bar\psi_f\Gamma\psi_f, ff: flavor index) and nonsinglet (ψˉf1Γψf2,f1f2\bar\psi_{f_1} \Gamma \psi_{f_2}, f_1 \neq f_2) bilinear quark operators (where Γ=1,γ5,γμ,γ5γμ,γ5σμν\Gamma = \mathbb{1},\,\gamma_5,\,\gamma_{\mu},\,\gamma_5\,\gamma_{\mu},\, \gamma_5\,\sigma_{\mu\,\nu}) on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D.Comment: 8 pages, 3 figures, 2 tables, Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    The Nuclear Yukawa Model on a Lattice

    Full text link
    We present the results of the quantum field theory approach to nuclear Yukawa model obtained by standard lattice techniques. We have considered the simplest case of two identical fermions interacting via a scalar meson exchange. Calculations have been performed using Wilson fermions in the quenched approximation. We found the existence of a critical coupling constant above which the model cannot be numerically solved. The range of the accessible coupling constants is below the threshold value for producing two-body bound states. Two-body scattering lengths have been obtained and compared to the non relativistic results.Comment: 15 page

    Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets at nonzero temperatures

    Full text link
    We present the theory of nonzero temperature (TT) spin dynamics and transport in one-dimensional Heisenberg antiferromagnets with an energy gap Δ\Delta. For T<<ΔT << \Delta, we develop a semiclassical picture of thermally excited particles. Multiple inelastic collisions between the particles are crucial, and are described by a two-particle S-matrix which has a super-universal form at low momenta. This is established by computations on the O(3) σ\sigma-model, and strong and weak coupling expansions (the latter using a Majorana fermion representation) for the two-leg S=1/2 Heisenberg antiferromagnetic ladder. As an aside, we note that the strong-coupling calculation reveals a S=1, two particle bound state which leads to the presence of a second peak in the T=0 inelastic neutron scattering (INS) cross-section for a range of values of momentum transfer. We obtain exact, or numerically exact, universal expressions for the thermal broadening of the quasi-particle peak in the INS cross-section, for the magnetization transport, and for the field dependence of the NMR relaxation rate 1/T11/T_1 of the effective semiclassical model: these are expected to be asymptotically exact for the quantum antiferromagnets. The results for 1/T11/T_1 are compared with the experimental findings of Takigawa et al and the agreement is quite good. In the regime Δ<T<(atypicalmicroscopicexchange)\Delta < T < (a typical microscopic exchange) we argue that a complementary description in terms of semiclassical waves applies, and give some exact results for the thermodynamics and dynamics.Comment: REVTEX, 53 pages and 23 postscript figures; added additional reference and associated clarificatio

    Glueballs, closed fluxtubes and eta(1440)

    Full text link
    The etaL(1410)eta_L(1410) component of the η(1440)\eta(1440) pseudoscalar has strong affinity for glue. But its mass is incompatible with lattice simulations that predict a much higher value for the 0+0^{-+} glueball. As a consequence it has been suggested that ηL(1410)\eta_L(1410) could signal physics beyond the Standard Model. Here we argue that if glueballs are closed gluonic fluxtubes then ηL(1410)\eta_L(1410) is a prime candidate for the 0+0^{-+} glueball. Furthermore, in the absence of parity violating terms its mass should be degenerate with that of the 0++0^{++} glueball. We also suggest that the decay properties of such glueballs could be employed as probes for extra dimensions.Comment: 11 page

    Gauge Invariant Smearing and Matrix Correlators using Wilson Fermions at beta=6.2

    Full text link
    We present an investigation of gauge invariant smearing for Wilson fermions on a 243×4824^3 \times 48 lattice at β=6.2\beta = 6.2. We demonstrate a smearing algorithm that allows a substantial improvement in the determination of the baryon spectrum obtained using propagators smeared at both source and sink, at only a small computational cost. We investigate the matrix of correlators constructed from local and smeared operators, and are able to expose excited states of both the mesons and baryons.Comment: at lattice `92. 4 pages latex + 3 postscript figures. Edinburgh preprint: 92/51

    On the Schroedinger Representation for a Scalar Field on Curved Spacetime

    Get PDF
    It is generally known that linear (free) field theories are one of the few QFT that are exactly soluble. In the Schroedinger functional description of a scalar field on flat Minkowski spacetime and for flat embeddings, it is known that the usual Fock representation is described by a Gaussian measure. In this paper, arbitrary globally hyperbolic space-times and embeddings of the Cauchy surface are considered. The classical structures relevant for quantization are used for constructing the Schroedinger representation in the general case. It is shown that in this case, the measure is also Gaussian. Possible implications for the program of canonical quantization of midisuperspace models are pointed out.Comment: 11 pages, Revtex, no figure

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change
    corecore