771 research outputs found
NVV auger spectra from W(100)
The NVV Auger spectrum from a clean W(100) surface has been measured in the second derivative, d^2N (E)/dE^2, mode to enhance fine structure. This measurement is compared with spectra generated from both the self‐convolution of the tungsten valence‐band bulk density of states (obtained from a relativistic APW energy band calculation) and a "restricted convolution" in which only transitions involving electrons from the same valence energy are allowed. The restricted convolution for a model of the Auger process in which both N_6VV and N_7VV transitions contribute offers the best match of theory and experiment. No distinct evidence of Auger emission involving the surface resonance present on W(100) is observed. Effects of H_2 and O_2 adsorption on the Auger spectrum of the W(100) surface are reported
Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures
The latest Micromesh Gas Amplification Structures (Micromegas) are achieving
outstanding energy resolution for low energy photons, with values as low as 11%
FWHM for the 5.9 keV line of Fe in argon/isobutane mixtures at
atmospheric pressure. At higher energies (MeV scale), these measurements are
more complicated due to the difficulty in confining the events in the chamber,
although there is no fundamental reason why resolutions of 1% FWHM or below
could not be reached. There is much motivation to demonstrate experimentally
this fact in Xe mixtures due to the possible application of Micromegas readouts
to the Double Beta Decay search of Xe, or in other experiments needing
calorimetry and topology in the same detector. In this paper, we report on
systematic measurements of energy resolution with state-of-the-art Micromegas
using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as
low as 1.8% FWHM have been obtained, with possible evidence that better
resolutions are achievable. Similar measurements in Xe, of which a preliminary
result is also shown here, are under progress.Comment: 16 pages, 19 figures, version after referees comments. Accepted for
publication in Nuclear Instruments and Methods
Ergodicity of the LLR method for the Density of States
The LLR method is a novel algorithm that enables us to evaluate the density of states in lattice gauge theory. We present our study of the ergodicity properties of the LLR algorithm for the model of Yang-Mills SU(3). We show that the use of the replica exchange method alleviates significantly the topological freeze-out that severely affects other algorithms
Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears
In this paper we present the perturbative computation of the difference
between the renormalization factors of flavor singlet
(, : flavor index) and nonsinglet
() bilinear quark operators
(where ) on the lattice. The computation is performed to
two loops and to lowest order in the lattice spacing, using Symanzik improved
gluons and staggered fermions with twice stout-smeared links. The stout
smearing procedure is also applied to the definition of bilinear operators. A
significant part of this work is the development of a method for treating some
new peculiar divergent integrals stemming from the staggered formalism. Our
results can be combined with precise simulation results for the renormalization
factors of the nonsinglet operators, in order to obtain an estimate of the
renormalization factors for the singlet operators. The results have been
published in Physical Review D.Comment: 8 pages, 3 figures, 2 tables, Proceedings of the 35th International
Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai
The Nuclear Yukawa Model on a Lattice
We present the results of the quantum field theory approach to nuclear Yukawa
model obtained by standard lattice techniques. We have considered the simplest
case of two identical fermions interacting via a scalar meson exchange.
Calculations have been performed using Wilson fermions in the quenched
approximation. We found the existence of a critical coupling constant above
which the model cannot be numerically solved. The range of the accessible
coupling constants is below the threshold value for producing two-body bound
states. Two-body scattering lengths have been obtained and compared to the non
relativistic results.Comment: 15 page
Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets at nonzero temperatures
We present the theory of nonzero temperature () spin dynamics and
transport in one-dimensional Heisenberg antiferromagnets with an energy gap
. For , we develop a semiclassical picture of thermally
excited particles. Multiple inelastic collisions between the particles are
crucial, and are described by a two-particle S-matrix which has a
super-universal form at low momenta. This is established by computations on the
O(3) -model, and strong and weak coupling expansions (the latter using
a Majorana fermion representation) for the two-leg S=1/2 Heisenberg
antiferromagnetic ladder. As an aside, we note that the strong-coupling
calculation reveals a S=1, two particle bound state which leads to the presence
of a second peak in the T=0 inelastic neutron scattering (INS) cross-section
for a range of values of momentum transfer. We obtain exact, or numerically
exact, universal expressions for the thermal broadening of the quasi-particle
peak in the INS cross-section, for the magnetization transport, and for the
field dependence of the NMR relaxation rate of the effective
semiclassical model: these are expected to be asymptotically exact for the
quantum antiferromagnets. The results for are compared with the
experimental findings of Takigawa et al and the agreement is quite good. In the
regime we argue that a
complementary description in terms of semiclassical waves applies, and give
some exact results for the thermodynamics and dynamics.Comment: REVTEX, 53 pages and 23 postscript figures; added additional
reference and associated clarificatio
Glueballs, closed fluxtubes and eta(1440)
The component of the pseudoscalar has strong
affinity for glue. But its mass is incompatible with lattice simulations that
predict a much higher value for the glueball. As a consequence it has
been suggested that could signal physics beyond the Standard
Model. Here we argue that if glueballs are closed gluonic fluxtubes then
is a prime candidate for the glueball. Furthermore, in
the absence of parity violating terms its mass should be degenerate with that
of the glueball. We also suggest that the decay properties of such
glueballs could be employed as probes for extra dimensions.Comment: 11 page
Gauge Invariant Smearing and Matrix Correlators using Wilson Fermions at beta=6.2
We present an investigation of gauge invariant smearing for Wilson fermions
on a lattice at . We demonstrate a smearing
algorithm that allows a substantial improvement in the determination of the
baryon spectrum obtained using propagators smeared at both source and sink, at
only a small computational cost. We investigate the matrix of correlators
constructed from local and smeared operators, and are able to expose excited
states of both the mesons and baryons.Comment: at lattice `92. 4 pages latex + 3 postscript figures. Edinburgh
preprint: 92/51
On the Schroedinger Representation for a Scalar Field on Curved Spacetime
It is generally known that linear (free) field theories are one of the few
QFT that are exactly soluble. In the Schroedinger functional description of a
scalar field on flat Minkowski spacetime and for flat embeddings, it is known
that the usual Fock representation is described by a Gaussian measure. In this
paper, arbitrary globally hyperbolic space-times and embeddings of the Cauchy
surface are considered. The classical structures relevant for quantization are
used for constructing the Schroedinger representation in the general case. It
is shown that in this case, the measure is also Gaussian. Possible implications
for the program of canonical quantization of midisuperspace models are pointed
out.Comment: 11 pages, Revtex, no figure
Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective
Transport properties of a thermal medium determine how its conserved charge
densities (for instance the electric charge, energy or momentum) evolve as a
function of time and eventually relax back to their equilibrium values. Here
the transport properties of the quark-gluon plasma are reviewed from a
theoretical perspective. The latter play a key role in the description of
heavy-ion collisions, and are an important ingredient in constraining particle
production processes in the early universe. We place particular emphasis on
lattice QCD calculations of conserved current correlators. These Euclidean
correlators are related by an integral transform to spectral functions, whose
small-frequency form determines the transport properties via Kubo formulae. The
universal hydrodynamic predictions for the small-frequency pole structure of
spectral functions are summarized. The viability of a quasiparticle description
implies the presence of additional characteristic features in the spectral
functions. These features are in stark contrast with the functional form that
is found in strongly coupled plasmas via the gauge/gravity duality. A central
goal is therefore to determine which of these dynamical regimes the quark-gluon
plasma is qualitatively closer to as a function of temperature. We review the
analysis of lattice correlators in relation to transport properties, and
tentatively estimate what computational effort is required to make decisive
progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag.
added end of section 3.4, and one at the end of section 3.2.2; some Refs.
added, and some other minor change
- …