2 research outputs found

    Mitigating the autogenous shrinkage of alkali-activated slag by internal curing

    No full text
    Alkali activated slag (AAS) has shown promising potential to replace ordinary Portland cement as a binder material. Synthesized from industrial by-products, AAS can show high strength, thermal resistance and good durability. However, AAS has been reported to exhibit high autogenous shrinkage. Autogenous shrinkage is a critical issue for building materials since it can induce micro- or macro-cracking when the materials are under restrained conditions. Hence, this work aims at mitigating the autogenous shrinkage of AAS by means of internal curing. The influences of internal curing on microstructure formation and autogenous shrinkage are investigated. The results show that internal curing provided by superabsorbent polymers is a promising way to reduce the autogenous shrinkage of AAS.Materials and Environmen

    Mitigating the autogenous shrinkage of alkali-activated slag by internal curing

    No full text
    Alkali activated slag (AAS) has shown promising potential to replace ordinary Portland cement as a binder material. Synthesized from industrial by-products, AAS can show high strength, thermal resistance and good durability. However, AAS has been reported to exhibit high autogenous shrinkage. Autogenous shrinkage is a critical issue for building materials since it can induce micro- or macro-cracking when the materials are under restrained conditions. Hence, this work aims at mitigating the autogenous shrinkage of AAS by means of internal curing. The influences of internal curing on microstructure formation and autogenous shrinkage are investigated. The results show that internal curing provided by superabsorbent polymers is a promising way to reduce the autogenous shrinkage of AAS
    corecore